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Performance-based Earthquake Engineering 

Pacific Earthquake Engineering Research Center 

Percentage of civilian non-institutionalized population with any type of 
health insurance 

Percentage of households where they speak English 

Percentage of occupied housing units that are owner occupied 

Quantum Geographic Information System 

San Francisco Planning and Urban Research Association 

Seismic Safety Commission 

Time spent in the NOcc functioning state 
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Time spent in the OccFull functioning state 

TOccFull Time spent in the OccLoss functioning state 

TLC Control Time: a pre-defined period that the recovery path is assessed 

UCLA University of California at Los Angeles 

USGS United States Geological Survey 

Std Dev Standard Deviation 

TOccFull 
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Executive Summary 

Introduction 

Given the high level of earthquake risk in California, all communities need to be prepared 
to respond to and recover from the impacts of a potentially devastating earthquake. 
Although there has been significant research on the estimation of direct economic losses 
immediately after an earthquake, there has not been enough research about long-term 
recovery, and even less in the development and application of computer simulation 
models. This is to some extent because data on building repair and recovery times from 
past earthquakes have not been systematically documented (Comerio M. , 2006). 
Moreover, the models developed so far have not successfully captured the complexity of 
the recovery process. Recovery depends on many factors (such as the socio-economic 
conditions of the affected area) that are usually difficult to measure, understand and apply 
to predicting or modelling the recovery process. 

We acknowledge that the parameters taken into account in the present analysis may not 
be appropriate for application to potential earthquakes in other regions due to many 
factors that can affect the post-disaster recovery process. The methodology was 
developed using the city of Napa and the 2014 M6 South Napa Earthquake as a real-world 
case study. Therefore, the results are expected to apply to earthquakes with similar 
impact and to communities with similar socio-economic and building characteristics. To 
apply the resulting model in regions with different characteristics, additional data 
collection and validation would be necessary. 

To address some of the key factors that influence recovery, the Alfred E. Alquist Seismic 
Safety Commission (SSC) engaged the GEM (Global Earthquake Model) Foundation and the 
University of California at Los Angeles (UCLA), Department of Civil and Environmental 
Engineering, a) to develop a methodology and an open-source and transparent software 
tool to estimate recovery states and recovery times following an earthquake; and b) to 
investigate the effect of external socio-economic factors on these recovery times. The SSC 
leveraged over 20 million dollars in funding from GEM supporters that has been used to 
develop the OpenQuake1 software package and related data sets, which the “Back to 
Normal”: Earthquake Recovery Modelling project uses. 

1 Seismic hazard and risk calculation software, developed by the Global Earthquake Model (GEM) Foundation. 
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Project Aims and Goals 

This project aims to quantify the effectiveness of specific actions to speed recovery of the 
building stock. In order to accomplish this, the project produced the necessary technical 
science for the development of computer simulation models to estimate building recovery 
states and recovery times following an earthquake. 

In particular, this project has achieved the goals listed below: 

1. Developed a user-friendly, non-commercial and transparent software tool, herein 
referred as the Integrated Risk Modelling Toolkit (IRMT), to make map-based 
comparisons showing the effect of different resilient actions on the recovery times. 

2. Developed an analytic methodology, herein referred as the Reconstruction Recovery 
Model, to estimate post-earthquake recovery. Specifically: 
o Recovery curves2 of individual buildings were aggregated to estimate community-

wide recovery, while properly accounting for statistical correlation and uncertainty. 
o Thresholds of building damage were defined and quantified that relate to resilience: 

functionality, livability and reparability. 
o An event-tree3 method was developed to analyze a building’s state of recovery over 

time, based on its initial damage state. 
o Equations were developed that predict how a building recovers functionality over 

time. 
o External factors were identified that affect the process of a building’s recovery. 

Although not directly requested from the SSC, following the 2014 M6 South Napa 
Earthquake, three field surveys were conducted and the recovery of 356 individual 
damaged buildings in the city of Napa was documented, over a period of 18 
months, at 6-month intervals (February and August 2015 and March 2016). 
Consequently, an additional methodology, the Socio-Economic Recovery Model was 
also developed. This model provides predictions of community recovery based 
mainly upon socio-economic factors that influence the recovery trajectory. Because 
this model was developed outside the scope of the original study, it has not yet 
been implemented into the IRMT. 

2 Curves that relate building recovery times to the level of functionality. 
3 A graph that indicates the possible recovery stages of a building until it is fully recovered based on its post-
earthquake level of damage. 

5 



 
 

  
  

 
 

 
  

 
 

  
 

 

     

 

  
  

 

 
                                                   
          

              
   

3. Integrated the Reconstruction Recovery Model for practical use into GEM’s OpenQuake 
modelling platform. 

4. Demonstrated reasonable results by using the methodologies to model past 
earthquakes. In this context, the 2014 M6 South Napa Earthquake was used as a case 
study. 

5. Conducted a case study for the Southern California ShakeOut scenario4 using the 
Reconstruction Recovery Model, considering each of the counties in the Scenario as a 
“community snapshot” (namely: Riverside, Orange, Kern, San Diego, San Bernardino, 
Ventura, Los Angeles, Imperial). Thus, recovery times from a large simulated 
earthquake were estimated. 

6. Quantified how well specific actions can speed recovery of the building stock, by 
running the models “before” and “after” taking action. 

Uniqueness of Project - Intended Audience 

Key stakeholders and decision makers have a major responsibility following an 
earthquake to take actions that best serve their communities and increase resilience. 
They need to be well informed about the factors that influence the recovery process and 
the best practices to achieve successful results. Therefore, there is a need for long-term 
recovery studies to develop user-friendly, open-source tools that enable stakeholders to 
test how different resilience actions (such as building retrofitting) affect recovery times. 
Previously, various researchers have developed indicators to monitor the recovery process 
following a disaster (e.g., Chang, 2009, Brown et al., 2010 or Contreras et al., 2014). Other 
studies have focused on how socio-economic conditions affect recovery, but have 
provided only qualitative conclusions (e.g., Burton C., 2015). None of the studies has 
provided a user-friendly tool to predict recovery times or to relate building recovery stages 
to socio-economic factors in a quantitative manner. 

The results of this project will be useful to various stakeholders, including government, 
industry and academics that are concerned with enhancing post-disaster recovery of 
California communities. Particularly: 

4 The ShakeOut is an exercise based on a potential magnitude 7.8 earthquake on the southern San Andreas 
Fault with the goal to identify the physical, social and economic consequences of a major earthquake in 
southern California (Jones, et al., 2008). 
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• The IRMT, which incorporates the Reconstruction Recovery Model, would be useful to 
assist policy-makers, municipal governments and disaster managers to evaluate if and 
how factors, such as changes in building design and construction, affect the immediate 
impact and recovery trajectory. 

• The Socio-Economic Recovery Model would be valuable to key decision makers to 
make initial predictions of the recovery time and to identify those areas where high 
social vulnerability may prolong recovery times. By identifying the most vulnerable 
areas either before or after an earthquake, the model could be used as a guide to 
allocate (post) earthquake financial resources to people in most need of assistance. 

• Knowledge of the socio-economic parameters that most significantly influence the 
recovery trajectory contributes to a better understanding of the complex nature of 
recovery processes and allows decision-makers to identify the strengths and 
weaknesses within their communities. Thus, decision makers could develop informed 
pre-disaster recovery plans to address specific issues to facilitate recovery in 
accordance with the actual needs of the population. 

• The database developed during the field surveys in the city of Napa includes detailed 
information on: a) the location; b) the structural characteristics; c) the age of 
construction; d) the number of stories; e) colour-tagging information (red or yellow); f) 
the damage description; and, g) the quantified recovery progress over time for 356 
damaged buildings. This database will be very useful to various stakeholders, including 
insurance companies, engineering companies or researchers. For example, the 
database could be used to analyse how the recovery times vary between different 
levels of damage and building typologies. 

Methods developed and data sets used 

This study presents two methodologies and a user-friendly, open-source software tool to 
model recovery trajectories at the building and community level following an earthquake. 
In both cases, the recovery time is predicted to be a function of the degree of damage from 
the earthquake. In the first approach, the recovery time is predicted by analyzing the steps 
in the reconstruction and permitting process for construction and repair of buildings of 
different types. This approach results in the Reconstruction Recovery Model, which 
provides a framework to estimate both single building and community recovery times and 
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can be used to establish minimum bounds of reconstruction based on standard 
processes, such as the time required for inspection and/or damage evaluation, design, 
mobilization, permitting and repair. This is a process-based approach, which is based on 
normal building practice and approval processes. As such, it does not necessarily capture 
in a detailed way other factors that may prolong the duration of post-earthquake 
recovery. 

In order to explore this issue, data on the rebuilding process from an actual earthquake 
was required. By chance, the 2014 M6 South Napa Earthquake occurred part way through 
this study. This unfortunate event was used as an opportunity to collect data on housing 
recovery from the city of Napa. On-site field surveys were conducted over a period of 18 
months at 6-month intervals after the event, and the actual recovery data were then 
analyzed in relation to socio-economic data for the city of Napa. Based on these findings, 
an empirical Socio-Economic Recovery Model was developed to predict earthquake 
recovery at the community level. Both the Reconstruction Recovery Model and the Socio-
Economic Recovery Model start from the initial condition of the distribution of building 
damage after the earthquake. The latter model was developed and further validated using 
actual data from the recovery of the city of Napa. This model provides community recovery 
predictions based on socio-economic variables and the level of post-earthquake physical 
damage. Thus, this model is mainly focused on how socio-economic conditions influence 
recovery times. 

The Reconstruction Recovery Model was incorporated into the GEM IRMT, which allows 
the user to estimate the recovery time from an earthquake. The IRMT provides default 
values, but it provides the option to adjust these factors based on other inputs, such as 
from the results of the Socio-Economic Recovery Model. The IRMT is very flexible and 
allows users to experiment with different assumptions and factors that could alter the 
recovery process. The IRMT is a plugin of the open-source QGIS5 software and in order to 
run it the user needs to download QGIS on his/her computer. Then, the IRMT can be 
installed using the QGIS Plugins Manager, which is accessible through the QGIS menu as 
Plugins » Manage and install plugins. Additional information about the IRMT can be 
found here: https://plugins.qgis.org/plugins/svir/. Appendix 2 describes the basic 
workflow to develop an end-to-end recovery prediction. 

5 A free and open-source Geographic Information System to create, edit, visualize, analyze and publish 
geospatial information (http://www.qgis.org/en/site/forusers/download.html). 
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Key Findings 

Finding 1: The Reconstruction Recovery and Socio-Economic Recovery methodologies 
were applied to estimate community recovery times using data from the city of Napa and 
recovery from the 2014 M6 South Napa Earthquake. By comparing the outputs, it was 
found that the recovery is significantly influenced by pre-existing socio-economic factors, 
which should be included in recovery prediction models to obtain more realistic recovery 
predictions. 

Finding 2: The Reconstruction Recovery Model was applied using the Southern California 
ShakeOut Scenario and considering each of the counties in the Scenario as a “community 
snapshot” (namely: Riverside, Orange, Kern, San Diego, San Bernardino, Ventura, Los 
Angeles, Imperial). However, when the model is applied at the county scale, the single 
aggregated recovery curve may not provide realistic estimates of recovery durations. 
Partially this is because: a) the lack of detailed building exposure data required the data to 
be aggregated at a coarse level; and b) the model was not calibrated for large-scale 
earthquakes, where various factors, such as shortage of labor or materials and loss of 
critical infrastructure, might delay the recovery process. 

Finding 3: Using the Socio-Economic Recovery Model for the city of Napa, it was 
determined that the level (or amount) of earthquake building damage together with seven 
socio-economic variables contribute most to the prediction of building recovery. These 
variables are listed below in order of importance, with the level of damage being the most 
significant factor that influences recovery: 

a. Level (or amount) of building damage 
b. Homeownership 
c. Percentage of households that have a male householder 
d. Presence of health insurance coverage 
e. Employment status 
f. Percentage of households that have any type of available income 
g. Percentage of buildings constructed after 1950 (which are considered to be 

seismically designed and consequently behave better during an earthquake) 
h. Percentage of English speaking households 

It should be noted that the earthquake insurance penetration rate was not included in the 
model because data was not available at a sufficient spatial resolution (i.e., block group 
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level rather than zip code), nor were dates available associated with the insurance 
approval process. 

Finding 4: Based on qualitative analyses, such as personal interviews, it was found that in 
the city of Napa pre-existing earnings and wealth of the population were the main 
sources and drivers of recovery. Since earthquake insurance penetration in the city was 
very low and there was a considerable delay in the authorization of the federal Individual 
Assistance program, most of the homeowners initiated the payment of repairs from their 
personal resources and savings. This qualitative finding is consistent with socio-economic 
factors b, d, e, and f above. 

Finding 5: Populations that do not speak English, or that speak English as a second 
language, such as residents of the Latino communities in Napa, constitute a rather 
vulnerable group following a disaster. The municipal government of Napa faced many 
challenges in identifying and documenting housing damage and estimating monetary 
losses. One of the main factors contributing to this issue was that some people with 
English as a second language were particularly reluctant to report building damage due to 
lack of trust in authorities, possibly for fear of losing their housing rights. This lack of trust 
may have significantly affected the progress of recovery, and is therefore consistent with 
socio-economic factor h above. 

Finding 6: Based on the field surveys and the documentation of the building recovery in 
the city of Napa, it was observed that about 60% of the yellow-tagged buildings were fully 
recovered within the first six months, and 83% were fully recovered after 18 months. On 
the other hand, nearly 50% of the red-tagged buildings were still not recovered 18 months 
after the earthquake. In addition, nearly 80% of the surveyed structures that were not 
seismically designed sustained significant damage and were assigned a red tag. 
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Known Limitations 

Reconstruction Recovery Model 

The use of the default parameters (such as the assessment times, inspection times and 
mobilization times) provided currently by the IRMT would not be appropriate for 
application to potential earthquakes in other regions without additional post-disaster 
studies. More research is needed to better define the reconstruction times of various 
building types and at different levels of damage, in order to improve the applicability of 
model. 

Socio-Economic Recovery Model 

The methodology was developed using the city of Napa and the 2014 M6 South Napa 
Earthquake as a real-world case study. Therefore, it is expected to be applicable to 
communities with similar socio-economic and building characteristics (such as other 
California cities). In order to apply the model in regions with different characteristics, 
additional data collection and validation would be necessary. 

The selection of the socio-economic variables used in the analysis and their potential to 
predict recovery outcomes was based on previous research (e.g., Cutter et al., 2010) 
demonstrating their influence on the recovery of different communities. However, the 
model is flexible and can accommodate different parameters as predictors of recovery, 
such as the earthquake insurance penetration rate, which could be a very significant 
factor in the recovery process. In the case of the city of Napa, earthquake insurance was 
not considered in the analysis, because data were not available at the desired resolution, 
nor was there knowledge of the dates that insurance claims were approved. 

Additional Limitations 

There are other factors that influence the recovery process, such as government 
intervention in areas of high damage (a.k.a., the red zone), building permit processes, legal 
and financial aspects of demolition, debris management, and insurance availability. 

The government policy of the red zone will depend on the degree of damage after the 
earthquake and decisions taken by emergency managers in this respect. The amount of 
debris will be also a function of the degree of damage and their management after the 
earthquake must be described in the Emergency Response Plan of the city. 
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Debris management will influence the speed of the recovery process, as well as 
administrative processes such as permits and legal and financial aspects of demolitions, 
which could be also addressed either by the Emergency Response Plan of the city or by a 
pre-impact recovery plan. Another aspect that contributes to recovery is insurance 
availability. Although we received some data on insurance penetration in the city of Napa, 
the data provided were not adequate to determine whether it significantly influenced the 
building reconstruction process. 

Recommendations 

Recommendation 1: More long-term recovery studies from other earthquakes are 
required to refine both the Reconstruction Recovery Model and the Socio-Economic 
Recovery Model. It is recommended to develop a robust tool for earthquake recovery 
modelling and planning by merging the 2 models and implementing them into the IRMT. 
In addition, more long-term recovery studies are essential to identify and investigate 
indirect losses following earthquakes. 

Recommendation 2: Extend the methodologies beyond residential buildings to model 
recovery of critical facilities, such as hospitals, fire and police stations, power plants, water 
treatment plants and telecommunication networks. 

Recommendation 3: Based on the identified significant variables from the Socio-
Economic Recovery Model that positively contribute to the recovery process, it is 
recommended to: 

1. Facilitate access to assistance for vulnerable groups of the population, such as 
residents that do not speak English. 

2. Conduct further investigations into the relationships between the variables that 
correlate most positively with recovery (e.g., homeownership and health insurance) 
to determine the underlying causes. 

3. Conduct more extensive research on cost-benefit analysis of retrofitting buildings 
because the buildings not seismically designed in the city of Napa sustained 
significantly more damage compared to stronger structures. 

4. Improve access to financial mechanisms, such as earthquake insurance, to residents 
exposed to high earthquake risk, as well as investigate and promote alternative 
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post-earthquake resources, such as grants, which will support residents in the 
rebuilding process. 

Recommendation 4: Facilitate the involvement of insurance industry partners in future 
projects as advisors to improve the model and to gain access to more detailed earthquake 
insurance data. This would facilitate, for instance, a better understanding of the degree to 
which access to earthquake insurance influences the recovery process. 
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1 Introduction 

Given the high level of earthquake risk in California, all communities need to be prepared 
to respond to and efficiently recover from the impacts of a potentially devastating 
earthquake. Key stakeholders and decision-makers have a major responsibility following 
an earthquake to take actions that best serve their communities and increase resilience. 
They need to be well informed about the factors that influence the recovery process and 
the best practices to achieve successful results. 

Although there is significant research into developing computer models to predict direct 
economic losses immediately after an earthquake, long-term recovery studies and the 
development of computer simulation recovery models have received limited attention 
across governments and the scientific community. This is to some extent because: a) data 
on building repair and recovery times from past earthquakes have not been systematically 
documented, (Comerio, 2006); and b) recovery is a complex and multidimensional process 
that depends on many factors (such as the socio-economic conditions of the affected 
region). These factors are usually difficult to measure, understand and apply to predicting 
or modelling the recovery process. 

Previously, various researchers have developed indicators to monitor the recovery process 
following a disaster, e.g., (Chang, 2009), (Brown, Platt, & Bevington, 2010) or (Contreras, 
Blaschke, Kienberger, & Zeil, 2014). Other studies have focused on how socio-economic 
conditions affect recovery, but have provided only qualitative conclusions, e.g., (Burton C. , 
2015). None of the studies has provided a user-friendly tool to predict recovery times or to 
relate building recovery stages to socio-economic factors in a quantitative manner. 

To address this gap, the Alfred E. Alquist Seismic Safety Commission (SSC) engaged the 
GEM (Global Earthquake Model) Foundation and the University of California at Los Angeles 
(UCLA), Department of Civil and Environmental Engineering, to develop: a) a methodology 
and an open-source software tool to estimate recovery states and recovery times 
following an earthquake, and b) to investigate the effect of external socio-economic 
factors on these recovery times. The SSC leveraged over 20 million dollars in funding from 
GEM supporters that has been used to develop the OpenQuake software package and 
related data sets, which the “Back to Normal”: Earthquake Recovery Modelling project 
uses. The outputs of this project will be useful to various stakeholders, including 
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government, industry and academics, which are concerned with enhancing post-disaster 
recovery of California communities. 

We acknowledge that the parameters taken into account in the present analysis may not 
be appropriate for application to potential earthquakes in other regions due to many 
factors that can affect the post-disaster recover process. The methodology was developed 
using the city of Napa and the 2014 M6 South Napa Earthquake as a real-world case 
study. Therefore, the results are expected to apply to earthquakes with similar impact and 
to communities with similar socio-economic and building characteristics. To apply the 
resulting model in regions with different characteristics, additional data collection and 
validation would be necessary. 

This report is organized as follows: 

Section 2 briefly introduces the main outputs of the project and identifies the possible 
users and applications of the results. 

Section 3 provides a description of the two models developed within this project, the 
Reconstruction Recovery Model and the Socio-Economic Recovery Model. In addition, it 
describes the integration of the Reconstruction Recovery Model framework into the GEM’s 
Integrated Risk Modelling Toolkit (IRMT), a software tool designed to develop composite 
indicators, which is currently further extended to estimate the time required for a 
community or an individual building to recover following an earthquake. 

Section 4 discusses conclusions derived from applying the Reconstruction Recovery Model 
to the Southern California ShakeOut Scenario. In addition, it presents a comparison of the 
results of the Reconstruction Recovery Model and the Socio-Economic Recovery Model, 
which were both applied to estimate community recovery times of the residential building 
stock of the city of Napa, following the 2014 M6 South Napa Earthquake. 

Section 5 describes known limitations of both frameworks and Section 6 and Section 7 
summarize key findings and recommendations. 

Intended Audience 

This project produced the necessary technical science for the development of a framework 
(herein referred as the Reconstruction Recovery Model) and an open-source and 
transparent computer simulation model (herein referred as the Integrated Risk Modelling 
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Toolkit) to estimate building and community recovery states and recovery times following 
an earthquake. In addition, the effect of the socio-economic conditions of an area on the 
building recovery times was investigated using the city of Napa and the building recovery 
from the 2014 M6 South Napa Earthquake as a real-world case study. In this context, field 
surveys were conducted over a period of 18 months at 6-month intervals (February and 
August 2015 and March 2016) and building recovery data were collected and analyzed in 
relation to socio-economic indicators for the city. This work resulted in the Socio-
Economic Recovery Model, which provides community level recovery predictions mainly 
based on socio-economic variables. 

The results of this project will be useful to various stakeholders and particularly: 

• The Integrated Risk Modelling Toolkit (IRMT), which incorporates the Reconstruction 
Recovery Model, would be useful to assist policy-makers, municipal governments and 
disaster managers to evaluate if and how factors, such as changes in building design 
and construction, affect the immediate impact and recovery trajectory. 

• The Socio-Economic Recovery Model would be valuable to key decision makers to 
make initial predictions of the recovery time and to identify those areas where high 
social vulnerability may prolong recovery times. By identifying the most vulnerable 
areas either before or after an earthquake, the model could be used as a guide to 
allocate (post) earthquake financial resources to people in most need of assistance. 

• Knowledge of the socio-economic parameters that most significantly influence the 
recovery trajectory contributes to a better understanding of the complex nature of 
recovery processes and allows decision-makers to identify the strengths and 
weaknesses within their communities. Thus, decision makers could develop informed 
pre-disaster recovery plans to address specific issues to facilitate recovery in 
accordance with the actual needs of the population. 

• The database developed during the field surveys in the city of Napa includes detailed 
information on: a) the location; b) the structural characteristics; c) the age of 
construction; d) the number of stories; e) color-tagging information (red or yellow); f) 
the damage description; and, g) the quantified recovery progress over time for 356 
damaged buildings. This database will be very useful to various stakeholders, including 
insurance companies, engineering companies or researchers. For example, it could be 
used to analyze how the recovery times vary between various levels of damage and 
building typologies. 
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3 Methods Developed 

This section presents the two methodologies and the open-source software tool that 
were developed to model recovery trajectories at the building and community level 
following an earthquake. The description of the Reconstruction Recovery Model 
framework and its implementation into the IRMT is followed by the description of the 
development of the Socio-Economic Recovery Model. 

Reconstruction Recovery Model 

The performance-based earthquake engineering (PBEE) framework, developed by the 
Pacific Earthquake Engineering Research Center (PEER) provides a rigorous methodology 
for assessing the seismic performance of individual buildings and it works in four stages: 
hazard analysis, structural analysis, damage analysis (whereby measures of damage to 
building components are determined), and finally, estimation of measures of performance, 
such as associated repair/replacement costs (referred as decision variables). In the 
Reconstruction Recovery Model, for each individual building in a community the PBEE 
framework is applied, but incorporating new measures of damage and a new decision 
variable, the outcome of which is a building-level recovery function. Then, the individual 
building recovery functions are aggregated to develop a community-level recovery curve, 
which relates recovery time to the level of functionality of a building. The measure of a 
building’s functionality, which is the new decision variable, can be expressed in several 
ways, such as the recovery of the housing capacity in the case of a residential building. 
The conceptual overview of the framework for a residential community is illustrated in 
Figure 0-1. 
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Figure 0-1. Conceptual illustration of the Reconstruction Recovery Model framework. 

(Burton, Deierlein, Lallemant, & Lin, 2015). 

To exemplify, new building measures of the level of damage (limit states) that are 
intrinsically linked to recovery activities are incorporated in the framework and include: (i) 
damage triggering inspection (LS1); (ii) occupiable damage with loss of functionality (LS2); 
(iii) unoccupiable damage (LS3); (iv) irreparable damage (LS4); and (v) collapse (LS5). These 
limit states have been adapted from the building performance categories defined by the 
San Francisco Planning and Urban Research Association (SPUR) (Poland, 2009). 

Each of the above recovery-based (limit) states is associated with a specific recovery path 
that the building follows until it recovers. The path is described by using discrete 
functioning states and the time that the building spends in each state. The functioning 
states include: (i) the building is unsafe to occupy (NOcc); (ii) the building is safe to occupy 
but unable to facilitate normal operations (OccLoss); and (iii) the building is fully functional 
(OccFull). For example, if a building after an earthquake falls into the LS2 (occupiable 
damage with loss of functionality), it first enters the NOcc state until inspections are 
complete. Then, it enters the OccLoss state until functionality is restored and the 
completion of these repairs brings the building back to the OccFull state. The structural 
repair time of a building can be calculated based on a methodology developed by Mitrani-
Reiser, (2007) and other time parameters (such as inspection times or assessment times) 
can be empirically derived by monitoring the post-earthquake recovery of individual 
buildings of various typologies and levels of damage. 

21 



 
 

   
 

    
 

  

 

 

  

 

 

 
 

 

          

 

   
        

 

Each of the above functioning states is linked to a quantifiable level of functionality of the 
building. As previously mentioned, the level of functionality can be expressed in several 
ways, such as the recovery of the housing capacity in the case of a residential building. 
Knowing the level of functionality associated with each functioning state, the recovery 
path for each limit state can be related to a recovery function, as illustrated in Figure 0-2 
and calculated as follows: 

[q(t) | NOcc] t < [T | LS ] NOcc i 

[ 
[ 

⎧ 
⎪
⎨ 
⎪
⎩ 

[q t ] ] [T ] [T + T | LS ] NOcc OccLoss i ( ) | LS q(t) | OccLoss | LS t < ≤ = i NOcc i 

OccFull] [T + T LS ] NOcc OccLoss i q(t) | | ≤ t < T LC 

where [q(t) | LSi ] is the time dependent building functionality given its immediate post-

earthquake limit state LSi; [q(t) | NOcc] [, q(t) | OccLoss] and [q(t) | OccFull] represent the 

level of functionality associated with the NOcc, OccLoss and OccFull states respectively; 

[T | LSi ]is the time between the earthquake and the end of the NOcc phase associated NOcc 

with limit state LSi; [T + T | LSi ] is the time between the earthquake to the end of NOcc OccLoss 

the OccLoss phase for limit state LSi; and TLC is the predefined period that the recovery 
path (and recovery function) is assessed. 
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Figure 0-2. Conversion from recovery path to recovery function for a residential building. 

(Burton, Deierlein, Lallemant, & Lin, 2015). 

In other words, Figure 0-2 demonstrates that if the building is in the NOcc functioning 
state (Figure 0-2 - left), its functionality is zero (Figure 0-2 - right); when it enters the 

3-1 
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OccLoss state its functionality increases, until the building is fully functional (OccFull), 
where its functionality is 100%. 

The final individual building recovery function is computed accounting for the likelihood of 
the building being in each of the five limit states for a given ground shaking intensity. This 
is illustrated in the event tree, shown in Figure 0-3, where each limit state is associated 
with a unique recovery function (computed from Equation 3-1). Figure 0-3 also 
incorporates a sixth event that corresponds to damage below the threshold level that 
triggers inspection. The uncertainty associated with the building’s limit state following the 
earthquake and the expected building recovery is determined by the following equation: 

nls 
E[q(t) | IM ] = ∑[q(t) | LSi ] [P LSi | IM ] 

1 

where nls is the number of the limit states; E[q(t) | IM] is the expected individual building 

recovery function given an intensity measure level (IM); and P(LS | IM ) is the probability i 

that the building is in the ith limit state for a given IM level. 

Figure 0-3. Event tree used to assess building-level recovery. 

(Burton, Deierlein, Lallemant, & Lin, 2015). 

In the final stage of the methodology, individual building recovery functions can be 
aggregated to develop community-level recovery curves, as shown in Figure 0-1. For more 
technical and thorough details on the development of this framework readers are referred 
to Appendix 1. 

3-2 
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Integrated Risk Modelling Toolkit (IRMT) 

The Reconstruction Recovery Model was implemented into the existing OpenQuake 
Integrated Risk Modelling Toolkit (IRMT) developed by GEM, which is a software tool that 
allows the user to develop composite indicators and to integrate them with physical risk 
estimations. More specifically, the IRMT is a plugin of the open-source QGIS6 software and 
in order to run it the user needs to download QGIS on his/her computer. Then, the IRMT 
can be installed using the QGIS Plugins Manager, which is accessible through the QGIS 
menu as Plugins » Manage and install plugins. Additional information about the IRMT can 
be found here: https://plugins.qgis.org/plugins/svir/. 

The IRMT’s capabilities were extended (following the implementation of the 
Reconstruction Recovery Model) to allow users to generate recovery curves at the building 
and community level. The tool is open-source and transparent and users can access, 
change and adjust the source code to their needs. The input variables necessary to run the 
Reconstruction Recovery Model are listed in Table 0-1. These are pre-defined variables 
that need to be manually introduced and should be adjusted to the study region. Appendix 
2 describes in more detail the steps on how to use the tool, along with associated 
screenshots for clarification purposes. 

Table 0-1. Input variables to use the IRMT and run the Reconstruction Recovery Model. 
Input Variables Short Explanation 

Damage by asset 
File that contains the mean probabilities of exceedance of each limit 
state for each individual building; output of the OpenQuake-engine 

Inspection Time Time to complete inspections 
Assessment Time Time to conduct engineering assessments 
Mobilization Time Time to mobilize for construction 
Lead Time Dispersion Level of uncertainty associated with the lead time7 

Repair Time Time to repair a building 

Recovery Time 
Period between the occurrence of an earthquake and the restoration 
of full functionality of the building 
Conditional probability of being in a particular recovery-based (limit) 

Transfer Probabilities state, given the occurrence of a loss-based damage state (e.g., slight, 
moderate, extensive, complete) 

6 A free and open-source Geographic Information System to create, edit, visualize, analyze and publish 
geospatial information (http://www.qgis.org/en/site/forusers/download.html). 
7 Lead time is the time required for building inspection and/or evaluation, finance planning, 
architectural/engineering consultations, a competitive bidding process, and mobilizing for construction 
(Mitrani-Reiser, 2007). 
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Socio-economic Recovery Model 

The Reconstruction Recovery Model only implicitly accounts for external factors (such as 
the socio-economic conditions) that may prolong the duration of earthquake recovery (for 
example, by adjusting the lead time8 in the model). However, additional research and long-
term recovery studies are required to determine the socio-economic parameters that 
most significantly influence the recovery times and subsequently define ways to 
incorporate them into the Reconstruction Recovery Model in a more robust and detailed 
way. 

In order to explore this issue, data on the rebuilding process from an actual earthquake 
was required. Therefore, an earthquake recovery case study was developed using the city 
of Napa, California and the building recovery from the 2014 M6 South Napa Earthquake. In 
this case study, the socio-economic factors were identified that may affect recovery times 
and trajectories. This work resulted in the development of a second model, the Socio-
Economic Recovery Model, which provides predictions of post-earthquake community 
recovery over time, considering both the effect of the post-earthquake damage to the 
building stock and the effect of the socio-economic conditions of the affected area on the 
recovery trajectory. Because this model was developed outside the scope of the original 
study, it has not yet been implemented into the IRMT, described in Section 3.2. 

More specifically, a set of socio-economic indicators for the city of Napa (Table 4-1 in 
Appendix 4) and a post-earthquake damage indicator (the Modified Mercalli Intensity9 

(MMI) observed at the time of the 2014 M6 South Napa Earthquake) were used as 
predictors of community level recovery at different time instances in a probabilistic 
recovery modelling framework (Despotaki, Sousa, & Burton, 2017). To accomplish this, it 
was necessary to: a) monitor and quantify the building recovery of the city of Napa over 
time; b) assess and quantify the socio-economic conditions of the area of interest; and 
finally, c) relate the two concepts -recovery and socio-economic conditions- using a 
statistical regression tool, which provides community level recovery predictions. 

Lead time is the time required for building inspection and/or evaluation, finance planning, 
architectural/engineering consultations, a competitive bidding process, and mobilizing for construction 
(Mitrani-Reiser, 2007).
9 MMI: An arbitrary ranking of the intensity of an earthquake based on observed effects (Wood & Newmann, 
1931). 

8 
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Quantification of the Post-Earthquake Building Recovery 

In the aftermath of the 2014 M6 South Napa Earthquake, city officials implemented a 
rapid structural assessment program throughout the city and the building damage 
observations were geocoded and made available via a web Geographic Information 
System (GIS) by the City of Napa. These included: a) the location of the buildings; b) the 
structural characteristics; c) the age of construction; d) the number of stories; e) colour-
tagging information (red or yellow); and f) the associated building damage description. 

In order to monitor and quantify the progress of the building recovery occurring in the city 
and further use it in a predictive model, a building-by-building detailed inspection via 
three separate field surveys was conducted in February 2015, August 2015 and March 
2016 (6, 12 and 18 months following the earthquake). As part of the evaluation process, 
the recovery progress of 356 damaged structures (which included all the red and a random 
sample of the yellow-tagged buildings initially identified by the city officials) was 
documented and photographed. The spatial distribution of the surveyed buildings in the 
city of Napa is presented in Figure 0-4. 

Figure 0-4. The 356 evaluated red and yellow -tagged (ATC, 2005) buildings in the city of Napa. 

During each field survey, each individual building (of the 356) was assigned a code (0 or 1) 
indicating its stage of recovery relative to its initial damage following the event. In this 
framework, 0 represents a “No Recovery” stage (no retrofit and/or rebuild operations with 
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respect to the immediate post-earthquake condition); and 1 is associated with the 
building’s “Full Recovery” (building fully repaired/reconstructed and re-occupied). In this 
way, for each time instance a database was created indicating the recovery stage of each 
building and its recovery evolution over time. An example of the recovery progress of a 
building in the city of Napa over a period of 18 months is presented in Figure 0-5: Figure 
0-5a) corresponds to the first inspection, Figure 0-5b) shows the recovery stage at the 
time of the second survey, and Figure 0-5c) refers to the recovery stage at the time of the 
third field survey. 

(a) Recovery Category “0” (b) Recovery Category “0” (c) Recovery Category “1” 

Photos by Despotaki Venetia and Christopher Burton. 
Figure 0-5. Recovery progress of one building in the city of Napa at (a) 6; (b) 12; and (c) 18 months following 
the earthquake. 

In sum, nearly 83% of the yellow-tagged surveyed buildings were fully recovered after 18 
months (~60% within the first six months). On the other hand, approximately 50% of the 
red-tagged buildings were still not recovered at the end of the three surveys. 

Quantification of the Socio-Economic Conditions 

In order to quantify the pre-existing socio-economic conditions within the city of Napa, a 
set of 38 proxy parameters were collected, based on two criteria for their selection: 1) they 
must be retrievable from publically available data sources; and 2) they must have been 
previously recognized in the literature as being associated with the capacity of a 
community to recover from an earthquake event. The variables were collected at the 
census block group level of geography as defined by the U.S. Census Bureau, which 
provides a relevant proxy for neighbourhoods within an area (Burton C. , 2015). The 5-year 
estimates provided by the 2013 American Community Survey (ACS) were the primary 
source of statistical data pertaining to the 38 selected variables (the variables are 
presented in Table 4-1 in Appendix 4). 
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Relate Building Recovery and Socio-Economic Conditions 

Following the assessment/quantification of the building recovery over time and the 
assessment/quantification of the pre-existing socio-economic conditions of the city of 
Napa, the objective is to establish a quantitative relationship between the two (building 
recovery and socio-economic conditions). Methods such as the multivariate linear 
regression can be used to describe the relationship between an outcome (dependent 
variable) that one is interested in predicting (in this case, the building recovery stage), and 
a set of explanatory (independent) variables known to influence that outcome (in this case, 
the socio-economic parameters presented in Table 4-1 in the Appendix 4). However, when 
the dependent variable is dichotomous (such as 0 and 1 in the present case) a multivariate 
logistic regression model is commonly used (Hosmer & Lemeshow, 2000). According to the 
logistic regression model, if x1, …, xn are the independent variables and Y is the dependent, 
the probability of occurrence of the outcome of interest is computed as: 

�(!!!!!!!!!!!!⋯!!!!!) (3-3) �(� = 1) = 
1 + �(!!!!!!!!!!!!⋯!!!!!) 

where � is the intercept of the regression and �1 to �n are the regression coefficients 
corresponding to each of the x1 to xn independent variables. 

The 38 indicators presented in Table 4-1 in Appendix 4 constitute the independent 
variables of the logistic regression (x1, …, x38) and P(Y=1) represents the probability of a 
given building (in a certain census block group) being fully recovered. As previously 
discussed, these variables were used as proxies to represent and quantify the socio-
economic conditions of the study area. However, if two particular block groups with similar 
social conditions are considered, their recovery trajectory may mostly depend on the 
corresponding extent of the initial observed post-earthquake damage. As a result, the 38 
socio-economic parameters were complemented with a 39th independent variable, the 
Modified Mercalli Intensity (MMI) (Wood & Newmann, 1931) observed in each block group, 
which was considered as a measure of the seismic induced damage. The distribution of 
the MMI was acquired from the United States Geological Survey (USGS) ShakeMap 
platform (U.S. Geological Survey (USGS), 2015). In addition, because the temporal evolution 
of recovery was also of interest, an independent variable representing the time (T) was 
included in the dataset, assuming values of 6, 12 and 18 months (which correspond to the 
time of the three field surveys) (Despotaki, Sousa, & Burton, 2017). 
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In the next step, the logistic regression was performed and sets of regression coefficients 
(�1 to �40) were produced, which could be used to predict community recovery probabilities 
of other regions (apart from the city of Napa) by simply updating the values of the 
independent variables (x1 to xn) in Equation 3-3, accordingly. It should be also highlighted 
that both the mean predicted values of P(Y=1) and associated uncertainty were calculated 
for each block group, allowing policy-makers to plan for various scenarios. More technical 
details on the way the regression was performed and the test of the goodness-of-fit and 
accuracy of the model are presented in Appendix 4. 

Discussion of Results 

The recovery probabilities provided by the Socio-Economic Recovery Model can be 
understood as the likelihood of a building located in a specific census block group, being 
fully recovered at some time T after the earthquake and can be obtained using Equation 
3-3. The sets of the produced regression coefficients (1 to�40) could be used to generate 
recovery probabilities for other areas by updating the values of the independent variables 
of the regression, accordingly. 

The Socio-Economic Recovery Model could further be used to predict the evolution of 
community recovery at any time in the future. To exemplify, Figure 0-6 illustrates the 
recovery probabilities in the city of Napa at T=24 and 30 months following the event (for 
which actual recovery data were not obtained) by replacing the values of the variable 
representing the time (T), accordingly. 

a) b) 

Figure 0-6. Mean predicted recovery probabilities at a) 24; and b) 30 months after the earthquake, for the city 
of Napa. 

(Despotaki, Sousa, & Burton, 2017). 
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In addition, it is possible to use the Socio-Economic Recovery Model to identify which of 
the variables used in the analysis have the most significant effect on the recovery 
trajectory (more technical details on the significance test can be found in Appendix 4). 

In the case of the city of Napa, the indicators found to influence the trajectory of the 
recovery to the greatest extent are listed below in order of importance, with the level of 
building damage being the most significant: 

a. Level (or amount) of building damage 
b. Homeownership 
c. Percentage of households that have a male householder 
d. Presence of health insurance coverage 
e. Employment status 
f. Percentage of households that have any type of available income 
g. Percentage of buildings constructed after 1950 (which are considered to be 

seismically designed and consequently behave better during an earthquake) 
h. Percentage of English speaking households 

The influence of homeownership is justified by the fact that homeowners are usually in a 
better financial condition to respond to the impacts of a devastating earthquake (Burton 
C. , 2015) and they are more likely to have better access to government assistance 
programs (Comerio M. C., 1997). In addition, as it was verified during the field surveys, 
homeowners are more sentimentally attached to their homes, which provide a further 
incentive to promptly initiate recovery activities (Despotaki, Sousa, & Burton, 2017). 

Particularly in the city of Napa, where the employment rate is high and most of the 
residents have some type of available income, many homeowners paid for repairs from 
their personal resources and savings. This contributed to a more expedite recovery, since 
they did not have to wait until other recovery funding resources were made available. 
Similarly, the presence of health insurance facilitates the recovery processes, since access 
to medical care is an important post-event source of relief. 

Populations that do not speak English, or that speak English as a second language, like 
many residents of the Latino communities in the city of Napa, constitute a rather 
vulnerable group following a disaster. In the particular case of Napa, the municipal 
government faced many challenges in identifying and documenting housing damage and 
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estimating monetary losses. One of the main factors contributing to this issue was that 
some people with English as a second language were particularly reluctant to report 
building damage due to lack of trust in authorities, possibly for fear of losing their housing 
rights. 

Despite this limitation, the city of Napa is a resourceful and resilient community 
(Rabinovici, 2017), which significantly contributed to the overall timely and satisfactorily 
pace of recovery, as shown in Figure 0-7, where the mean recovery probabilities provided 
by the Socio-Economic Recovery Model at 6, 12 and 18 months after the earthquake are 
illustrated (Figure 0-7a, b and c, respectively). 

In this figure, it is possible to verify that the recovery is constantly progressing over time, 
albeit with a slower pace in the central and south-eastern block groups. This pattern is in 
accordance with the spatial distribution of the aforementioned significant variables 
(identified by the model), according to which lower values of the variables (which are 
known to hinder recovery processes) are also found in the central, south-eastern block 
groups. This trend is evident in Figure 0-7, where for illustration purposes, the spatial 
distribution of three significant variables is mapped; specifically, the percentage of 
homeownership (Figure 0-7d - PHU-OWNED), the percentage of the population with any 
type of health insurance (Figure 0-7e - PHEALTHINS), and the percentage of English 
speaking households (Figure 0-7f - PH-ENGLISH). Indeed, it can be observed that the 
spatial distribution of these variables is in good agreement with the plotted probabilities 
of recovery, with lower values in areas where a slower recovery is taking place (Despotaki, 
Sousa, & Burton, 2017). 

a) d) 
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b) e) 

c) f) 

Figure 0-7. a, b, c) Mean	 predicted recovery probabilities at 6, 12 and 18 months after the event;	 d, e, f) the 
spatial 	distribution 	of 	the 	percentage 	of 	homeownership, 	the 	percentage 	of 	population 	with any	 type of health	
insurance and the percentage	 of English speaking households across the city of Napa, classified	 in standard	
deviation. 

(Despotaki, Sousa, & Burton, 2017). 

Socio-Economic Recovery Model Results “before” and “after” taking action 

It is of great importance for decision-makers to be able to test how different resilience 
actions influence the recovery trajectory and times following an earthquake. The 
earthquakes cannot be predicted and their intensity cannot be controlled, thus 
stakeholders and community residents need to be prepared to effectively response to 
potential catastrophic events and focus on improving conditions that will facilitate a 
speedy return to normality. 
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As previously discussed, the Socio-Economic Recovery Model provides community 
recovery predictions at different time instances in the future, based on a set of 
parameters that describe the socio-economic conditions of the affected area and a 
variable that represents the level of the physical post-earthquake damage. The model 
further identifies which are the factors that most significantly affect the recovery, 
providing valuable information to decision makers on the social conditions and potential 
vulnerable groups of their communities that require special attention following an event. 

By experimenting with different values of the parameters that are used as predictors of 
recovery (Table 4-1 in Appendix 4) and running the Socio-Economic Recovery Model again, 
stakeholders could identify to what extent and how measures to increase community 
resilience affect recovery times. To exemplify, it can be identified what is the impact of 
increasing the health insurance penetration and/or what is the impact of 
increasing/improving a combination of parameters on the recovery trajectory. In addition, 
it is possible to change the values of the variables only for specific communities and 
subsequently identify the overall impact of these changes to the area of interest. Thus, 
depending on the scope of the analysis, the model provides the opportunity to test various 
scenarios and define appropriate resilience interventions. 

In order to better understand how the model and its predictions could be used in such a 
way, an exercise using the building recovery in the city of Napa was conducted. For the 
purposes of this exercise, two of the total identified (by the Socio-Economic Recovery 
Model) significant variables, were equally increased across all the communities. More 
specifically, the percentage of the population with any type of health insurance and the 
employment rate were increased by 10% for each census block group, while all the 
remaining 38 variables (40 in total) of the model were left as before. Both variables have 
been previously verified in the literature to facilitate recovery processes, e.g., (H. John 
Heinz III Center for Science, 2002), (Cutter, Burton, & Emrich, 2010). Following, updated 
recovery probabilities were generated at 6, 12 and 18 months following the earthquake, as 
illustrated in Figure 0-8. 
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Figure 0-8. Mean recovery probabilities of the city of Napa, after 6, 12, and 18 months following the 
earthquake, by increasing the percentage of the population with health insurance and the employment rate 
by 10%, for each block group within the city. 

By comparing Figure 0-8 with the respective recovery probabilities illustrated in Figure 
0-7, it can be observed that the 10% increase of the two parameters seems to have a 
crucial positive impact on the recovery progress of the city. Specifically, after 6 months of 
the event, an overall average increase of nearly 30% of the recovery probabilities is 
observed (i.e., from x percent to y percent), an average of nearly 12% increase after 12 
months (i.e., from x percent to y percent) and an increase of approximately 1% after 18 
months, compared to the initial model. This kind of analysis could provide stakeholders 
valuable insights into the effect of various actions and decisions and assist them in 
properly identifying the measures/interventions that bring the most successful results. 

At this point, it is important to highlight that the model and its predictions need to be 
further validated and tested in different regions and earthquake events, before these 
results are used for policy and decision making. 
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4 Applications of the Reconstruction and Socio-economic 
Recovery Models 

This section describes the application of the Reconstruction Recovery Model to different 
earthquake scenarios. A case study for the Southern California ShakeOut Scenario is 
described and conclusions on applying the model to a large-scale earthquake are 
discussed. Following, a comparison of the results of the Reconstruction Recovery Model 
and the Socio-Economic Recovery Model is presented. Both models were applied to 
estimate community recovery times of the residential building stock of the city of Napa 
following the 2014 M6 South Napa Earthquake. 

Southern California Shakeout Scenario 

The Reconstruction Recovery Model was applied using the Southern California ShakeOut 
Scenario and considering each of the counties in the Scenario as a “community snapshot” 
(namely: Riverside, Orange, Kern, San Diego, San Bernardino, Ventura, Los Angeles and 
Imperial). The ShakeOut is an exercise based on a potential magnitude 7.8 earthquake on 
the southern San Andreas Fault with the goal to identify the physical, social and economic 
consequences of a major earthquake in southern California (Jones, et al., 2008). 

The IRMT was used to develop an aggregated recovery curve for each of the 
aforementioned counties. Initially, the ShakeOut Earthquake was simulated and damage 
distribution statistics were computed for all the residential buildings across the eight 
counties, by running a Scenario Damage Assessment. The latter is a type of analysis 
supported by the risk component of the OpenQuake-engine (Silva, Crowley, Pagani, 
Monelli, & Pinho, 2014). The building exposure data that were used in the Scenario 
Damage Assessment were obtained from the “Beyond button Pushing – Seismic Risk 
Assessment for California” project of GEM supported by the California Seismic Safety 
Commission. Additional information on this exercise can be found in Appendix 3. 

However, when the Reconstruction Recovery Model is applied at the county scale, the 
single aggregated recovery curve may not provide realistic estimates of recovery 
durations. Partially this is because: a) the lack of detailed building exposure information 
required the data to be aggregated at a coarse level; and b) the model was not calibrated 
for large-scale earthquakes, where various factors, such as shortage of labor or materials 
and loss of critical infrastructure, might delay the recovery process. 
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2014 M6 South Napa Earthquake 

The Reconstruction Recovery Model was applied in order to estimate the recovery time of 
the residential building stock of the city of Napa following the earthquake. Then, 
aggregated recovery curves for each census block group were developed, using the IRMT 
previously described. The city of Napa, the census block group subdivisions and the spatial 
distribution of the residential buildings is presented in Figure 0-1a, while Figure 0-1b 
illustrates an example of the recovery curves for a specific block group (zone 5042) 
produced by the two models (Reconstruction and Socio-Economic Recovery Model). It can 
be observed that the Reconstruction Recovery Model methodology underestimates the 
recovery time relative to the empirically-based Socio-Economic Recovery Model. This 
difference highlights that external socio-economic parameters have a considerable effect 
on the recovery time and should be taken into account in recovery modelling frameworks. 

The Reconstruction Recovery Model considers the effect of the amount of the physical 
damage in a detailed and robust way (as described in Section 3 and further in Appendix 1), 
but only implicitly accounts for the effect of the socio-economic conditions on the recovery 
times by adjusting the lead time for recovery. For example, the buildings’ assessment time 
could be increased in order to capture a possible lack of engineering staff in the study 
area. On the other hand, the Socio-Economic Recovery Model was developed and further 
validated based on actual earthquake recovery data and provides community recovery 
predictions using socio-economic parameters; this model implicitly accounts for the level 
of physical damage using MMI as a proxy. In the case of the city of Napa, the spatial 
distribution of MMI proved to be a good indicator of the post-earthquake induced damage, 
but this may not be the case in other regions. Thus, further research and long-term 
recovery studies are required in order to merge these 2 models into a hybrid one, in which 
both physical damage and socio-economic parameters are taken into account directly and 
in a robust and detailed way. 
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5 

Figure 0-1. (a) The city of Napa and the spatial distribution of the residential buildings; (b) Recovery curves 
developed by the 2 models for the zone highlighted in yellow. 

Known Limitations 

Reconstruction Recovery Model 

The use of the default parameters (such as the assessment times, inspection times and 
mobilization times) provided currently by the IRMT would not be appropriate for 
application to potential earthquakes in other regions without additional post-disaster 
studies. More research is needed to better define the reconstruction times of various 
building types and at different levels of damage, in order to improve the reliability of 
model. 

Socio-economic Recovery Model 

The methodology was developed using the city of Napa and the 2014 M6 South Napa 
Earthquake as a real-world case study. Therefore, it is expected to be applicable to 
communities with similar socio-economic and building characteristics (such as other 
California cities). In order to apply the proposed model in different regions, additional data 
collection and validation would be necessary. 

The selection of the socio-economic variables used in the analysis and their potential to 
predict recovery outcomes was based on previous research (e.g., Cutter et al., 2010) 
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demonstrating their influence on the recovery of different communities. However, the 
methodology is flexible and can accommodate different parameters as predictors of 
recovery, such as the earthquake insurance penetration rate, which could be a very 
significant factor in the recovery process. In the case of the city of Napa, earthquake 
insurance was not considered in the analysis, because data were not available at the 
desired resolution nor was there knowledge of the dates that the insurance claims were 
approved. 

Additional Limitations 

There are other factors that influence the recovery process, in areas of high damage (a.k.a., 
the red zone), building permit processes, legal and financial aspects of demolition, debris 
management, and insurance availability. 

The government policy of the red zone will depend on the degree of damage after the 
earthquake and decisions taken by emergency managers in this respect. In some cases, 
one or more zones may be cordoned off while debris is cleaned, heavily damaged buildings 
are demolished or buildings are repaired or reconstructed. However, the time should be 
minimized in order, to avoid a traumatic relocation process that goes from temporal to 
permanent, without considering the breaking of pre-existing collaborative networks 
(Contreras, Blaschke, & Hodgson, 2017). Another undesirable effect is the breaking down 
of the urban fabric and creation of marginal zones into the city (Contreras, Blaschke, 
Kienberger, & Zeil, 2013). 

The amount of debris will be also a function of the degree of damage. Taking into account 
the urban morphology of Napa city, which is mainly made up of buildings with no more 
than 3 stories, debris was not a critical problem in this earthquake. The implementation of 
either efficient mitigation plans before the earthquake, or a debris management plan after 
can prevent the need for a red zone or at least reduce the period when it needs to be 
established. 

There are new tendencies in debris management such as the pilot program released by 
Federal Emergency Management Agency (FEMA) in 2007, which provides incentives for 
communities to recycle by allowing them to retain revenue from the sale of disaster debris 
(Fetter & Rakes, 2012). Xiao et al. (2012) proposed a mathematical model to forecast the 
amount of building waste, considering the characteristics of the buildings to suggest 
potential reuse and recycling. 
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Debris management will influence the speed of the recovery process, as well as 
administrative processes such as permits and legal and financial aspects of demolitions, 
which could also be addressed either by the Emergency Response Plan of the city or a 
pre-impact recovery plan. Complex legal requirements for management of waste hampers 
efforts to quickly remove, recover and dispose of the waste, delaying the progress of the 
recovery process (Brown, Milke, Seville, & Giovinazzi, 2010). 

Another aspect that contributes to the recovery, is insurance availability. In Napa only 6% 
of houses were covered by earthquake insurance (Farr & Respaut, 2014). Although, proper 
data about insurance penetration in the city of Napa was requested it was not possible to 
get sufficiently detailed information due to privacy restrictions. The results of the “Back to 
Normal” report show where earthquake risks are greatest, and therefore where risk 
mitigation and risk transfer such as through insurance would be most effective. This 
information could be used to promote the acquisition of insurance not only for 
reconstruction of houses but also to cover losses for business interruption due to 
earthquakes (Business interruption insurance), e.g. in the wineries closest to Napa and 
wine shops in the city (Campbell, 2014); (Farr & Respaut, 2014). Thus, information on 
insurance coverage would be useful for future planning. 

Key Findings 

Finding 1: The Reconstruction Recovery and Socio-Economic Recovery methodologies 
were applied to estimate community recovery times using data from the city of Napa and 
recovery from the 2014 M6 South Napa Earthquake. By comparing the outputs, it was 
found that the recovery is significantly influenced by pre-existing socio-economic factors, 
which should be included in recovery prediction models to obtain more realistic recovery 
predictions. 

Finding 2: The Reconstruction Recovery Model was applied using the Southern California 
ShakeOut Scenario and considering each of the counties in the Scenario as a “community 
snapshot” (namely: Riverside, Orange, Kern, San Diego, San Bernardino, Ventura, Los 
Angeles, Imperial). However, when the model is applied at the county scale, the single 
aggregated recovery curve may not provide realistic estimates of recovery durations. 
Partially this is because: a) the lack of detailed building exposure data required the data to 
be aggregated at a coarse level; and b) the model was not calibrated for large-scale 
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earthquakes, where various factors, such as shortage of labor or materials and loss of 
critical infrastructure, might delay the recovery process. 

Finding 3: Using the Socio-Economic Recovery Model for the city of Napa, it was 
determined that the level (or amount) of earthquake building damage together with seven 
socio-economic variables contribute most to the prediction of building recovery. These 
variables are listed below in order of importance, with the level of damage being the most 
significant factor that influences recovery: 

a. Level (or amount) of building damage 
b. Homeownership 
c. Percentage of households that have a male householder 
d. Presence of health insurance coverage 
e. Employment status 
f. Percentage of households that have any type of available income 
g. Percentage of buildings constructed after 1950 (which are considered to be 

seismically designed and consequently behave better during an earthquake) 
h. Percentage of English speaking households 

It should be noted that the earthquake insurance penetration rate was not included in the 
model because data was not available at a sufficient spatial resolution (i.e., block group 
level rather than zip code), nor were dates available associated with the insurance 
approval process. 

Finding 4: Based on qualitative analyses, such as personal interviews, it was found that in 
the city of Napa pre-existing earnings and wealth of the population were the main 
sources and drivers of recovery. Since earthquake insurance penetration in the city was 
very low and there was a considerable delay in the authorization of the federal Individual 
Assistance program, most of the homeowners initiated the payment of repairs from their 
personal resources and savings. This qualitative finding is consistent with socio-economic 
factors b, d, e, and f above. 

Finding 5: Populations that do not speak English, or that speak English as a second 
language, such as residents of the Latino communities in Napa, constitute a rather 
vulnerable group following a disaster. The municipal government of Napa faced many 
challenges in identifying and documenting housing damage and estimating monetary 
losses. One of the main factors contributing to this issue was that some people with 
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English as a second language were particularly reluctant to report building damage due to 
lack of trust in authorities, possibly for fear of losing their housing rights. This lack of trust 
may have significantly affected the progress of recovery, and is therefore consistent with 
socio-economic factor h above. 

Finding 6: Based on the field surveys and the documentation of the building recovery in 
the city of Napa, it was observed that about 60% of the yellow-tagged buildings were fully 
recovered within the first six months, and almost 83% were fully recovered after 18 
months. On the other hand, nearly 50% of the red-tagged buildings were still not recovered 
18 months after the earthquake. In addition, nearly 80% of the surveyed structures that 
were not seismically designed sustained significant damage and were assigned a red tag. 

Recommendations 

Recommendation 1: More long-term recovery studies from other earthquakes are required 
to refine both the Reconstruction Recovery Model and the Socio-Economic Recovery 
Model. It is recommended to develop a robust tool for earthquake recovery modelling and 
planning by merging the 2 models and implementing them into the IRMT. In addition, 
more long-term recovery studies are essential to identify and investigate indirect losses 
following earthquakes. 

Recommendation 2: Extend the methodologies beyond residential buildings to model 
recovery of critical facilities, such as hospitals, fire and police stations, power plants, water 
treatment plants and telecommunication networks. 

Recommendation 3: Based on the identified significant variables from the Socio-Economic 
Recovery Model that positively contribute to the recovery process, it is recommended to: 

1. Facilitate access to assistance for vulnerable groups of the population, such as 
residents that do not speak English. 

2. Conduct further investigations into the relationships between the variables that 
correlate most positively with recovery (e.g., homeownership and health insurance) 
to determine the underlying causes. 

3. Conduct more extensive research on cost-benefit analysis of retrofitting buildings 
because the buildings not seismically designed in the city of Napa sustained 
significantly more damage compared to stronger structures. 

4. Improve access to financial mechanisms, such as earthquake insurance, to residents 
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exposed to high earthquake risk, as well as investigate and promote alternative 
post-earthquake resources, such as grants, which will support residents in the 
rebuilding process. 

Recommendation 4: Facilitate the involvement of insurance industry partners in future 
projects as advisors to improve the model and to gain access to more detailed earthquake 
insurance data. This would facilitate, for instance, a better understanding of the degree to 
which access to earthquake insurance influences the recovery process. 
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APPENDIX 1 - Reconstruction Recovery Model 

This appendix presents the scientific recovery modelling framework that was developed to 
quantify the effectiveness of specific resilience-building actions (preparedness, mitigation, 
and response) that would increase the speed of recovery following an earthquake. The 
overall approach is based on the methodology developed by Burton et al. (2015) and 
consists of four main components: (1) recovery-based limit state fragility function 
development, (2) developing building-level time dependent recovery functions, (3) 
accounting for the effect of externalities and socio-economic vulnerability and (4) 
developing community/regional level recovery functions. These are discussed in detail in 
the following subsections. 

1.1. Recovery-Based Fragility Function Parameters 

A rigorous evaluation of seismic resilience requires probabilistic methods for assessing 
limit states that influence post-earthquake functionality, which can be incorporated in 
modelling the recovery of the building stock. The methodology incorporates a set of 
building performance limit states that specifically inform community seismic resilience 
(Figure 1-1). These limit states have been adapted from the building performance 
categories defined by the San Francisco Planning and Urban Research Association (SPUR) 
(Poland et al. 2009). They include (i) damage triggering inspection, (ii) occupiable damage 
with loss of functionality, (iii) unoccupiable damage, (iv) irreparable damage and (v) 
collapse. These limit states are different from those that are currently used in OpenQuake 
and other risk modelling platforms. This sub-section intends to document the 
methodology used to map the fragility function parameters from the loss-based limit 
states used in OpenQuake to those of the recovery-based limit states used to model 
recovery. 
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collapse LS5 clear and rebuild 

irreparable damage LS4 demolish and rebuild 

building unsafe LS3 vacate until repaired inspection 
triggered 

loss of occupy during repairs repairable functionality LS2 no safe to damage collapse occupy functionality 
continued function maintained LS1 

inspection not triggered LS0 continued function 

Figure 1-1. Event tree showing building performance limit states and recovery actions. 

1.2. Recovery-Based Building Performance Limit States 

Five discrete limit states (LS0 through LS5) are used, which are explicitly linked to post-
earthquake recovery-related activities. Each limit state is associated with a unique 
combination of the following consequent actions to restore building function: 

• Assessment and planning activities i.e. post-earthquake inspection and/or 
evaluation, preparation of plans and designs, financing and bidding preparation for 
construction work; 

• Repairs needed to make building occupiable and repairs needed to restore 
functionality for repairable buildings; and 

• Demolition and building replacement for non-repairable buildings. 

LS0 - Damage below the threshold that would trigger inspection. 

LS1 - Damage Triggering Inspection with Functionality Maintained: This represents the 
minimum damage threshold that would require post-earthquake inspection and/or 
evaluation. It is also used to imply a level of damage where, despite the need for post-
earthquake inspection, the structural safety and critical subsystems essential to the 
functionality of the building are not compromised. However, operations may be impacted 
if the owner/operator decides to close the facility until inspections are completed. This 
decision is prompted by visible damage to structural (cracking of concrete members) or 
non-structural elements (partitions, facades etc.). This type of damage occurs at low drift 
levels and affects structural and non-structural components with low deformation 
capacities. 
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LS2 - Occupiable Damage with Loss of Functionality: This implies that the building is 
structurally safe, occupiable and accessible but unable to carry out its primary function. 
This loss of functionality can occur despite the preservation of structural integrity as a 
result of damage to building systems, non-structural components or contents, which are 
critical to the operations of the facility. There may also be damage to structural 
components whose repair actions hinder normal building operations. 

LS3 - Unoccupiable Damage: This infers that the building is either inaccessible or not safe 
to occupy following an earthquake. The loss of structural safety will likely be due to a 
substantial loss in the load carrying capacity of the gravity or lateral system that poses a 
life safety threat in the event of an aftershock. It is also possible but less likely for non-
structural damage to compromise the safety or prevent access to the building. This is 
usually in the form of some type of falling hazard (e.g. brick façade or infill panels); 
however, these types of dangers can be mitigated in a short period of time. LS3 is of 
particular importance to residential buildings as it is directly related to the shelter-in-
place performance goal emphasized in SPUR’s resilient city initiative. 

LS4 - Irreparable Damage: LS4 pertains to cases where the building is damaged to such an 
extent that repair becomes technically or cost prohibitive, necessitating demolition and 
replacement. The three main earthquake-related situations that can lead to demolition 
include (1) large permanent deformations and story drifts that make repairs unfeasible, (2) 
direct economic losses that exceed the limit set by insurance providers triggering full-
value pay-out leading to complete replacement and (3) damage to key structural 
components that could significantly impede the repair process. 

LS5 - Collapse: LS5 is associated with complete or partial collapse, which is generally 
associated with either excessive lateral deformations (sideways collapse) or the local or 
global loss of vertical load carrying capacity. 

1.3. Loss-Based Building Performance Limit States 

Risk modelling platforms such as OpenQuake and HAZUS use limit state fragility functions 
that relate earthquake ground shaking intensity to building damage. These limit states 
are used to link ground motion intensity to direct economic losses (vulnerability curves) 
that result from having to repair or replace damaged buildings. The limit states are 
classified based on construction type and are described in terms of the type and extent of 
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physical damage to the building. The following is a description of the limit states (taken 
from HAZUS), which are relevant to wood frame single- and multi-family residential 
buildings found in Napa and California in general: 

• Slight Damage: Small cracks in non-structural elements (window, wall intersections, 
masonry chimneys, masonry veneer and stucco) and slippage in bolted connections. 

• Moderate Damage: Small cracks across shear wall, large cracks at doors, windows and 
masonry veneer, topping of tall masonry chimneys, minor slack in diagonal rod bracing 
and small cracks and split in bolted connections. 

• Extensive Damage: Large cracks across shear wall plywood joints, large slack at 
diagonal and broken braces, permanent lateral movement at floors and roof, topping of 
most brick chimneys, small cracks in foundations, split and/or slippage of sill plates 
and partial collapse at garage with soft-story configurations. 

• Complete Damage: Large permanent lateral displacement, may collapse, imminent 
collapse, some structures slip off foundations, large foundation cracks, 3% total area 
collapsed, broken brace rod or failed framing connections. 

1.4. Methodology for Mapping Fragility Function Parameters from Loss-Based to 
Recovery-Based Building Performance Limit States 

There is an obvious correlation between the loss-based and recovery-based building 
performance limit states. In both cases, the limit states are discrete, sequential and 
mutually exclusive with the higher limit states being associated with more extensive 
damage. This obvious link was used as the basis for mapping the fragility function 
parameters between the two types of limit states. 

The fragility function for each of the loss-based limit states is assumed to take on a 
lognormal distribution and is defined by the following relationship (Singhal & Kiremidjian, 
1996); (FEMA, 2016): 

⎡ ⎛ ⎞⎤ 
P(DS > dsi | Sd ) = Φ⎢

β 
1 ln⎜

⎜ 
S
Sd 

⎟
⎟⎥ 1-1 

⎢ ⎥ ⎣ dsi ⎝ d ,dsi ⎠⎦ 

where Sd ,dsi is the median value of the spectral displacement at which the building 

reaches the threshold of damage state ��! ; �!"! is the standard deviation of the natural 

logarithm at which the building reaches the threshold of the damage state ��! and Φ is 
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the standard normal cumulative distribution function. For a given building construction 
type, HAZUS provides the median spectral displacement and log standard deviation for 
each of the four loss-based limit states. The inter-story drift at the threshold of each limit 
state is also provided. In addition to the building construction type, the parameters also 
vary based on the seismic code design level, which is directly related to the age of the 
buildings. Four code design levels are included, high-code, moderate-code, low-code and 
pre-code. The fragility function parameters for the two construction types for wood frame 
buildings (W1, wood light frame and W2, wood commercial and industrial) can be found in 
Table 5.9 of HAZUS 3.2 (2016). 

The primary objective of this part of the overall study was to map the loss-based fragility 
parameters shown in Table 5.9 of HAZUS to recovery-based limit state parameters. The 
first step was to estimate the conditional probability of being in a particular recovery-
based limit state given the occurrence of a loss-based damage state. This conditional 
probability relationship is defined as follows: 

P(RBDS = rbdsi | LBDS = lbds j ) 1-2 

where P(RBDS = rbdsi | LBDS = lbds j ) is the probability that the recovery-based damage 

state (����)! occurs given that the loss-based damage state (����)! has been 
observed. Estimates of these conditional probabilities are provided in Table 1-1. The 
current values are based on engineering judgment. They were obtained by examining the 
physical description of damage provided for the loss-based limit states and inferring the 
likelihood that this type of damage would trigger each of the six (LS0 through LS5) 
recovery-based limit states. Later on in the development of the framework, these 
estimates were refined based on the results from nonlinear response history analyses of 
typical wood-frame buildings using the OpenSees modelling platform. The results from 
the structural response simulation were used to establish analytical fragility functions for 
both types of limit states. This process enabled the development of a more explicit 
relationship between the fragility parameters for the two types of limit states. The 
conditional probabilities estimates can be further refined using heuristic data obtained 
from expert opinion. However, this approach is outside the scope of the current project. 

In Table1-1, each row provides the probability of being in each of the recovery-based limit 
states given the occurrence of the loss-based limit state in the first column of that row. 
For example, it can be observed that for a building that is in the loss-based limit state 
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corresponding to moderate damage, the probability of being in recovery-based limit states 
LS0, LS1, LS2 and LS3, is 0.2, 0.4, 0.3 and 0.1 respectively with a zero probability of being in 
the remaining limit states (LS4 and LS5). Given that the recovery-based limit states are 
mutually exclusive and collectively exhaustive, each row must sum to one. 

Table 1-1. Conditional probabilities used to map fragility parameters for loss-based to recovery-based limit 
states. 

Loss-Based 
Damage States 

P(RBDS = rbds i |LBDS = lbds j ) 
LS0  Inspection 
not Triggered 

LS1 
Inspection 

LS2  Loss of 
Functionality 

LS3  Unsafe to 
Occupy 

LS4  Damaged 
Beyond Repair 

LS5 
Collapse 

None 
Slight 

Moderate 
Extensive 
Complete 

1.0 
0.6 
0.2 
0.0 
0.0 

0.0 
0.4 
0.4 
0.0 
0.0 

0.0 
0.0 
0.3 
0.2 
0.0 

0.0 
0.0 
0.1 
0.4 
0.0 

0.0 
0.0 
0.0 
0.3 
0.2 

0.0 
0.0 
0.0 
0.1 
0.8 

Given the loss-based fragility function parameters in Table 5.9 of HAZUS and the 
conditional probability estimates in Table 1-1, the probability of occurrence of a particular 
recovery-based limit state can be obtained using the total probability theorem: 

n 
1-3 P(RBDS = rbdsi | Sd ) = ∑ 

lbds 

P(PRBDS = rbdsi | LBDS = lbds j )⋅P(LBDS = lbds j | Sd ) 
j=1 

where P(RBDS = rbds | LBDS = lbds ) is taken from Table 1-1 and P(LBDS = lbds | Sd ) is i j j 

obtained from the fragility functions of the loss-based limit states. Given the probability 
of being in recovery-based limit state i , the probability of exceeding that limit state is 
taken as the sum of the probabilities of occurrence of all limit states equal to and greater 
than i . 

nrbds 
P(RBDS > rbdsi | Sd ) = ∑ P(RBDS = rbdsi | Sd ) 1-4 

i 

We can then use equation 1-4 to compute the median spectral displacement, Sd ,rbdsi and 

dispersion �!"#$! for the recovery-based limit state fragilities. Figure 1-2, Figure 1-3, 

Figure 1-4 and Figure 1-5 provide a comparison of the recovery- and loss-based fragility 
functions. They were generated as part of the development of the methodology and 
reflect the differences between the loss-based and the recovery-based fragility 
parameters, both of which are built into the new OpenQuake tool. The parameters that 
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define the recovery-based fragility functions for the wood light frame construction type, 
W1 (all code levels included) is summarized in Table 1-2. 
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(a) (b) 
Figure 1-2. Fragility curves for (a) loss-based and (b) recovery based limit states for light wood frame 
buildings (W1) with high-code seismic design. 
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(a) (b) 
Figure 1-3. Fragility curves for (a) loss-based and (b) recovery based limit states for light wood frame 
buildings (W1) with moderate-code seismic design. 

Pr
ob

ab
ili

ty
 o

f E
xc

ee
di

ng
 L

im
it 

St
at

e 1 

0.8 

0.6 

0.4 

0.2 

0 

1 

Pr
ob

ab
ili

ty
 o

f E
xc

ee
di

ng
 L

im
it 

St
at

e 

0 5 10 15 20 25 30 

Inspection 
Loss Function 
Not Occupy
Irreparable 
Collapse 

0.8 

0.6 

0.4 

0.2 

0 

Slight 
Moderate 
Extensive 
Complete 

0 5 10 15 20 25 30 
Spectral Displacement (inches) Spectral Displacement (inches) 

(a) (b) 

52 



 
 

             
    

 
                                                                          

             
    

           
  

 

      
 

 
 

  
     

 
 

      
 

 
 

 
 

       

 
 

  

 

  

 
 

 

 

 

  

 
 

 

 

 

 

Figure 1-4. Fragility curves for (a) loss-based and (b) recovery based limit states for light wood frame 
buildings (W1) with low-code seismic design. 
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Figure 1-5. Fragility curves for (a) loss-based and (b) recovery based limit states for light wood frame 
buildings (W1) with pre-code seismic design. 

Table 1-2. Fragility function parameters for recovery-based limit states for light woodframe buildings, W1: 
(a) Median spectral displacement at limit state exceedance and (b) log-standard deviation. 

(a) 

Code Level 
Median Spectral Displacement for Exceeding Limit State 

LS1 Inspection 
Triggered 

LS2 Loss of 
Functionality 

LS3 Unsafe 
to Occupy 

LS4  Damaged 
Beyond Repair 

LS5 
Collapse 

High-Code 
Moderate-Code 

Low-Code 
Pre-Code 

1.2 
1.1 
1.0 
0.8 

3.1 
2.5 
2.5 
2.0 

5.4 
4.1 
4.0 
3.4 

8.5 
6.4 
6.1 
5.3 

15.6 
11.9 
11.9 
9.8 

(b) 

Code Level 
Log-Standard Deviation of Spectral Displacement at Limit State Exceedance 
LS1 Inspection 

Triggered 
LS2 Loss of 
Functionality 

LS3 Unsafe 
to Occupy 

LS4  Damaged 
Beyond Repair 

LS5 Collapse 

High-Code 
Moderate-Code 

Low-Code 
Pre-Code 

0.80 
0.84 
0.93 
1.01 

0.81 
0.86 
0.98 
1.05 

0.85 
0.89 
1.02 
1.07 

0.97 
1.04 
0.99 
1.06 

0.99 
1.07 
0.99 
1.08 

1.5. Building-Level Recovery Model 

Overview 

In the previous section, it was noted that the recovery modelling methodology 
incorporates a set of building performance limit states that specifically inform community 
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seismic resilience including (i) damage triggering inspection, (ii) occupiable damage with 
loss of functionality, (iii) unoccupiable damage, (iv) irreparable damage and (v) collapse. The 
link to post-earthquake recovery is established by defining a characteristic recovery path 
that is associated with each state and the level of functionality associated with each 
state. A building recovery function was computed accounting for the uncertainty in the 
occurrence of each recovery path and its associated limit state. The outcome is a 
probabilistic assessment of recovery of functionality at the building level for a given 
ground motion intensity. 

1.5.1. Building Recovery Paths 

Five distinct recovery paths were defined based on the limit states discussed previously. 
The recovery paths are described using discrete functioning states and the time spent in 
each state. The functioning states represent the changing condition of the building with 
respect to its ability to facilitate its intended operation. The functioning states for 
modelling the recovery of shelter-in-place housing capacity include (1) the building is 
unsafe to occupy (NOcc), (2) the building is safe to occupy but unable to facilitate normal 
operations (OccLoss) and (3) the building is fully functional (OccFull). Note that these 
three states are specific to the shelter-in-place metric and would need to be re-defined 
for other measures of functionality. The key to define the functioning states are that (1) 
they must be explicitly linked to the building level limit states described earlier and (2) 
each functioning state must be associated with a quantifiable measure of functionality. 

The building level recovery path is conceptually shown in Figure 1-6. It is a step function 
that describes the time spent in each of the discrete functioning states. The recovery path 
(and recovery function discussed later) is assessed over a pre-defined period of time 
referred to as the control time, TLC; and TNOcc, TOccLoss and TOccFull denote the time spent in 
the NOcc, OccLoss and OccFull functioning states, respectively. It is important to note that 
the functioning states that comprise the recovery path for a given building depend on the 
limit state of that building immediately following the earthquake. For example, a building 
that is in limit state LS1 will only experience the NOcc and OccFull functioning states. On 
the other hand, a building that is in limit state LS2 or LS3 will experience all three 
functioning states. This is illustrated later in the discussion of building recovery paths. The 
time spent in each functioning state will also vary depending on the level of damage. For 
example, a building that is in limit state LS4, which must be demolished and rebuilt, will 
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spend a significantly greater amount of time in the NOcc state than a building in limit 
state LS3, which only requires repairs. 

Figure 1-6. Conceptual illustration of recovery path for an individual building.
(Burton, Deierlein, Lallemant, & Lin, 2015). 

The recovery time for an individual building is defined as the period of time between the 
occurrence of the earthquake and the restoration of full functionality. The recovery time 
includes (1) the lead time which is the time required for building inspection and/or 
evaluation, finance planning, architectural/engineering consultations, a competitive 
bidding process and to mobilize for construction (Mitrani-Reiser, 2007), (2) the repair time 
needed to restore occupiability and (3) the repair time needed to restore functionality. The 
time needed to restore occupiability is taken as the time to complete repairs related to 
structural safety and internal access, whereas the time needed to restore functionality 
includes the additional time needed to repair/replace building systems, non-structural 
components and contents that are essential to the building functionality. Both the lead 
and repair times for structural and non-structural components depend on the limit state 
of the building immediately following the event. For example, a building that is in limit 
state LS1 following an event (damage triggers inspection but the building is found to be 
safe to occupy and functional) will likely be green tagged and only be out of service for the 
time it takes to complete the inspection. On the other hand, a building that is in limit state 
LS2 (building is safe to occupy but not functional) may receive a yellow tag, which would 
require detailed evaluations by a professional engineer prior to re-occupancy. A building 

55 



 
 

 
 

  

 

  

 

 
 

 
  

  
 

  
 

 
 

 

  
  

 

that is red tagged (LS3, LS4 and LS5) may require demolition or extensive repairs, triggering 
additional lead time for planning, architectural/engineering consultations, possible 
competitive bidding and mobilization for construction. Mitrani-Reiser (2007) developed a 
performance-based approach to estimating repair times for both structural and non-
structural damage, which incorporates the lead times for different tagging scenarios as 
well as the sequencing of repairs. In this study, Mitrani-Reiser’s method is used to 
compute both the repair time needed to restore safety/accessibility and the repair time 
needed to restore functionality. 

The recovery paths for each limit state were derived from the information provided in 
Table 1-3, which shows the relevant activities and time spent in each functioning state. 
The recovery paths are described as follows: 

• Recovery Path for LS0: This implies that the functionality of the building is not 
disrupted and the OccFull state is maintained throughout the period following the 
earthquake. 

• Recovery Path for LS1: This path is associated with the occurrence of LS1 where the 
extent of damage triggers inspection but does not compromise the functionality of 
the building. It is comprised of the NOcc and OccFull states. The time spent in the 
NOcc state is the time to complete inspections. Following inspections, the building 
is deemed occupiable and fully functional, immediately entering fully functional 
OccFull state. 

• Recovery Path for LS2: For LS2, the recovery path includes all three functioning 
states. Like recovery path 1, the building initially enters the NOcc state until 
inspections are complete. Following inspections, the building enters the OccLoss 
state because, despite being safe to occupy, repairs will be needed to restore 
functionality. The time spent in the OccLoss state is determined by the repair time 
for those building systems, non-structural components and content that is 
essential to the building function. Completion of these repairs returns the building 
to the fully functional OccFull state. 

• Recovery Path for LS3: The recovery path for LS3 also includes all three functioning 
states. Initially, the NOcc state includes the inspection and other lead times, along 
with the time to complete structural repairs needed to restore occupiability. Since 
LS3 is associated with significant structural and non-structural damage, the lead 
time will include planning, design consultations, bidding and the time to mobilize 
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for construction. Following the completion of structural repairs, the recovery will 
enter the OccLoss state during which the repairs needed to restore functionality 
are completed. The completion of these repairs would return the building to the 
OccFull state. 

• Recovery Path for LS4: In LS4, where the building is irreparably damaged, the recovery 
path includes the NOcc and OccFull states, where the NOcc state includes the time 
to demolish and replace the damaged building. As the recovery of this building 
involves new construction, occupancy is not likely to be restored prior to full 
completion, which is why this path does not include the OccLoss phase. 

• Recovery Path for LS5: The recovery path associated with partial or complete collapse 
is very similar to that of the demolition case, the only difference being that LS5 

would not require any time to assess whether or not the building could or would be 
repaired. However, this additional time is likely to be insignificant compared to the 
time needed to replace the building, hence the recovery paths associated with LS4 

and LS5 are essentially the same. 

Table 1-3. Recovery path activities and times for each functioning state.
(Burton, Deierlein, Lallemant, & Lin, 2015). 

Recovery Time/Acitivies in Functional State 
Path No. NOcc OccLoss OccFull 

0 
1 
2 
3 
4 
5 

0 
TINSP 

TINSP 

TINSP + TASMT + TMOB + TOCC 

TASMT + TMOB + TREP 

TMOB + TREP 

0 
0 

TFUNC 

TFUNC 

0 
0 

TLC 

TLC - TINSP 

TLC - TINSP - TFUNC 

TLC - TINSP - TASMT - TMOB - TOCC - TFUNC 

TLC - TASMT - TMOB - TREP 

TLC - TMOB - TREP 

TINSP - Time to complete inspections 
TFUNC - Time to restore functionality 
TASMT - Time to conduct engineering assessment 
TMOB - Time to moblize for construction 
TOCC - Time to complete repairs needed to restore occupiability/structural safety 
TREP - Time to replace building 

1.5.2. Probabilistic Assessment of Recovery of Functionality at the Building-Level 

Each functioning state can be linked to a quantifiable level of functionality. The 
functionality will typically be specified based on building owner/stakeholder and 
community resilience needs. For example, in the case of residential buildings in a 
community, where, from the perspective of the policy-makers, functionality is measured 
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by housing capacity or number of persons housed. Where loss of certain building 
functions would not preclude short-term shelter-in-place requirements, the shelter-in-
place functionality could be determined by assuming the full pre-earthquake housing 
capacity is achieved for both the OccFull and OccLoss states. Alternatively, the expected 
housing capacity at the OccLoss state may need to account for the likelihood that the 
building is evacuated by its residents given the loss of a particular service, i.e., 

E[q(t) | OccLoss]= [1− P(Evac | OccLoss)][q(t) | OccFull] 
where E[q(t) | OccLoss] is the expected housing capacity for a residential building in the 

OccLoss functioning state; P(Evac | OccLoss) is the probability that the building is 

evacuated, given that it is safe to occupy but without some of its services; and 

[q(t) | OccFull]is the housing capacity associated with the OccFull state or the pre-

earthquake housing capacity. The P(Evac | OccLoss) can be determined based on judgment 
informed by observations from past earthquakes. Knowing the level of functionality 
associated with each functioning state, the recovery paths for each limit state can be 
related to recovery functions, as illustrated in Figure 1-7 and calculated as follows: 

[q(t) | NOcc] t < [T | LS ] NOcc i 

[ 
[ 

⎧ 
⎪
⎨ 
⎪
⎩ 

[q t ] ] [T ] [T + T | LS ] NOcc OccLoss i ( ) | LS q(t) | OccLoss | LS t < ≤ = i NOcc i 

OccFull] [T + T LS ] NOcc OccLoss i q(t) | | ≤ t < T LC 

where [q(t) | LSi ] is the time dependent building functionality given its immediate post-

earthquake limit state LSi; [q(t) | NOcc] [, q(t) | OccLoss] and [q(t) | OccFull] represent the 

level of functionality associated with the NOcc, OccLoss and OccFull states respectively; 

[T | LSi ]is the time from the earthquake to the end of the NOcc phase associated with NOcc 

limit state LSi; [T + T | LSi ] is the time from the earthquake to the end of the NOcc OccLoss 

OccLoss phase for limit state LSi . 

1-5 

1-6 
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Figure 1-7. Conversion from recovery path to recovery function for residential building.
(Burton, Deierlein, Lallemant, & Lin, 2015). 

The building recovery function is computed accounting for the likelihood of the building 
being in each of the five limit states for a given ground shaking intensity. This is 
illustrated in the event tree, shown in Figure 1-8, where each limit state is associated with 
a unique recovery function (computed from Equation 1-6). Figure 1-8 also incorporates a 
sixth event that corresponds to damage below the threshold level that triggers inspection. 
The uncertainty in the building limit state and expected recovery is determined by the 
following: 

[ E q t ( ) | 
nls 

IM ] = ∑ [ q t ( ) | ] [ LS P LS i i | IM ] 1-7 
1 

where [ E q t( ) | IM] is the expected recovery function given IM and ( P LSi | IM ) is the 

probability that the building is in the ith limit state for a given IM level. 

Figure 1-8. Limit state event tree used to assess building-level recovery.
(Burton, Deierlein, Lallemant, & Lin, 2015). 
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1.6. Statistical Models for Linking the Rate of Recovery to Socio-Economic Variables 

Overview 

Externalities and socio-economic vulnerability will have a significant effect on the rate of 
recovery of communities. This section presents several statistical models in addition to 
logistic regression (Section 4, main text) that could inform the relationship between the 
pace of recovery and some combination of predictor variables that are related to socio-
economic factors. Three linear regression methods were utilized using the Napa recovery 
and resilience variables including (i) Ordinary Least Squares, (ii) Ridge, and (iii) The Least 
Absolute Shrinkage and Selector Operator. Among those methods, statistical significance 
is attained when a p-value is less than the significance level, which indicates that the 
statistic is reliable, i.e. that predictor has a strong influence on recovery. Two machine 
learning methods were also incorporated: (i) Random Forest, and (ii) Support Vector 
Machine. 

Ordinary Least Squares Regression (OLS) 

OLS is one of the most basic and commonly used prediction techniques with applications 
in fields as diverse as statistics, finance, economics and engineering. It uses a linear 
combination of predictors to estimate the dependent variable, which can be taken using 
the formula: 

� = �� + � 1-8 

Y is a �×1 vector dependent variable, where n is the number of data points; X is a �×� 

matrix of the explanatory variables, where p is the number of predictor variables; � is a 

�×1 vector of the regression coefficient; and � is a �×1 vector describing the random 
component of the linear relationship between X and Y. 

The objective of OLS is to minimize the difference (residual) between the observed value of 
the dependent variable and predicted value by the linear approximation of the data. 

� = ������ ! �! − �!!� != �!� !!�!� 1-9 

To evaluate the statistical significance of the regression coefficient, the t-statistic is used, 

where implicit statistical hypotheses are �!: � = 0 and �!: � ≠ 0. The t-statistic, which 
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follows the t distribution with (� − �) degrees of freedom, is computed as the ratio 
between the estimated regression coefficient and its standard error: 

�! 1-10 
� = 

��(�!) 
~� � − � 

!! where �� �! = �! �!� !! , �! = !
!
!

!!
!

, � = Y− X� 

The p-value is the probability of obtaining at least as extreme results given that null 

hypothesis is true, i.e. � = ����������� � > � . If p-value is smaller than significance 

level �, the predictor attains statistical significance and therefore rejecting the null 

hypothesis. � is mostly often set at 0.05. 

Ridge Regression 

Ridge Regression is employed when analyzing multiple regression data that suffers from 
multicollinearity (Groetsch, 1984). Multicollinearity, which is the existence of strong 
correlations between predictor variables, can lead to inaccurate estimates of the 
regression coefficients, inflate the standard errors of the regression coefficients and 
deflate the partial t-tests for the regression coefficients. 

Ridge regression penalizes the size of the regression coefficients by imposing a constraint 
on the sum of the squared values (the L2 norm) of the predictor coefficients: 

� = ������ ! �! − �!!� ! + � !
!!!�!

! = �!� + �� !!�!� 1-11 

To select λ, cross validation is conducted whereby, the data is split into K folds. The 

regression model is developed using K− 1 folds and the test error is evaluated using the 

fold that was excluded from the model fitting. The best choice of λ would be the one that 
provides the least test error. T-statistic in ridge is computed in a similar manner to OLS 
(Equation 1-10): 

�!� 
�ℎ��� �� �! = �! �!� + �� !!�!� �!� + �� !! 

!! , �! = � − � , � = Y− X� 

The Least Absolute Shrinkage and Selector Operator Regression (LASSO) 

The LASSO regression is another method that addresses multicollinearity by doing both 
model selection and coefficient shrinkage (Tibshirani, 1996). Using L1-penalization, 
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! 1-12 � = ������ ! �! − �!!� ! + � !!! �! = �!� + �� !!�!� 

LASSO is preferred over ridge regression when there is an assumption that the solution is 

sparse, i.e. many �!= 0, because L1 regularization shrinks some of the predictor 
coefficients to zero. If there is no assumption of the sparse feature, ridge regression is 
usually preferred since ridge only shrinks the regression coefficients. 

Random Forest 

The random forest is a machine learning algorithm, which combines the strategies of 
bagging, and randomly selecting features to classify and regress data (Breiman, 2001). 
Specifically, random forest constructs a multitude of decision trees using training data and 
outputs the mode of the classes (classification) or mean prediction (regression) of the 
individual trees. Bagging involves applying a majority vote (selecting the path with the 
greatest number of outcomes) for classification or prediction after many large trees are 
independently constructed using bootstrap resampled versions of the training data. 
Random forests change how the classification and regression trees are constructed. In 
normal trees, each node is split using the best split among all variables. In a random 
forest, each node is split using the best among a subset of predictors randomly chosen at 
that node. 

The algorithm of random forest is as follows: 

1. Draw bootstrap samples from training dataset. 
2. For each of sample tree, the Classification and Regression Tree (CART) is applied 

first. The idea of CART is to recursively divide the space into rectangular subspaces 
until satisfying some criteria of classification or regression. 

3. In each tree, randomly selected features need to be incorporated to modify CART. 
The best split (based on the Gini index (Menze, et al., 2009) among a subset of 
predictors is chosen randomly rather than using all variables. 

4. Classify or regress data by major vote on all individual tress. 

Support Vector Machine (SVM) 

SVM is another widely used supervised learning method that is used to analyze data and 
perform classification and regression. In SVM regression, the input n-dimension features 
x are first mapped onto a high m-dimensional space using some fixed mapping (Smola & 
Vapnik, 1997). In this study, the Gaussian Radial Basis mapping is used, then linear 
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regression is used to construct the model in this space. The linear model in the m-
dimension feature space could be defined as: 

! 

� �,� = �! .�!(�)+ � 1-13 
!!! 

where, �! � , � = 1,… ,� denotes the transformation using Gaussian Radial Basis. 

SVM regression uses the �-insensitive loss function proposed by (Smola & Vapnik, 1997): 

� �, � �,� = max (0, � − � �,� − �) 1-14 

where ε is the tolerable bandwidth. At the same time, it also tries to reduce model 

complexity by minimizing � !. Combining these two techniques, the following primal 
optimization problem is formed: 

! 1-15 
��� 

1
2 
� ! + � (�! + �!∗) 

!!! 

�! − � �! ,� − � ≤ �! 
s.t. � �! ,� − �! − � ≤ �!∗ 

�! , �!∗ ≥ 0, � = 1,…� 

The solution to the above dual problem is given by: 

! 

� � = (�! − �!∗)�(�! , �) 1-16 
!!! 

0 ≤ �! ≤ � 
0 ≤ �!∗ ≤ � 

, and k is the number of support vectors. 

1.7. Community-Scale Recovery Functions 

An overview of the framework used to generate the community-level recovery functions is 
shown in Figure 1-9. The performance-based earthquake engineering framework is 
applied to each building within the target community, incorporating the limit states 
described earlier. The outcome is a recovery function that is generated for individual 

s.t. 

where, � �! , � = �!(�!)�!(�) !
!!! 
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buildings. The function describing community-level recovery is obtained by aggregating 
the recovery curves for the individual buildings after accounting for the variation and 
spatial correlation of shaking intensity at each site, the effect of externalities and other 
socio-economic factors. Note that the contribution of individual buildings to the 
functionality of the region depends on the type of building and measure of functionality. 
This aggregation of building-level functionality would require quantifying the contribution 
of each building to the defined measure of community function. The housing recovery 
function is described by the following equation: 

nbldg 
1-16 [Q(t) | EQ j ]= ∑E[qi (t) | IMi , EQ j ] 

i=1 

where !Q(t) | EQj 
# describes community recovery for scenario earthquake j, " $ 

E[qi (t) | IM , EQ j ] describes the expected recovery curve for building i at a given ground i 

motion IM level resulting from scenario earthquake j, and is the number of buildings nbldg 

in the community. 

The long-term effects of an earthquake on a community can also be described by the 
cumulative loss of functionality over the course of the recovery period. For example, the 
loss of housing capacity over the recovery period measured in “person-days” can be 
computed from a community-level recovery curve that has number of residents housed 
by the community as the measure of functionality. This cumulative loss in functionality for 
a particular earthquake event is illustrated in Figure 1-9 and can be described by the 
following equation: 

TRE 

1-17 [LQRE | EQ j ]= ∫ (Q − Q(t))dt 0 
TE 

where [LQ | EQ ] is the loss of functionality over the recovery period for scenario RE j 

earthquake j, Q0 is the pre-earthquake level of functionality, TE is the time of the 

earthquake and is the time at full recovery. TRE 

Equation 1-17 describes the cumulative loss of functionality for a single scenario 
earthquake. Multiple scenario earthquakes can be considered and used to describe the 
annual exceedance rate for specified amounts of cumulative loss. This is obtained by 
computing the cumulative loss for multiple earthquake scenarios each with a different 
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magnitude, location and annual rate of occurrence. The rate of exceedance, λ , for 
specified loss levels is estimated by summing the occurrence rate for all scenarios in 
which the loss threshold on interest is exceeded. 

J 
1-18 λLQ ≥lq = ∑wj I (LQRE ≥ lq) 

RE 

j=1 

where w j is the occurrence rate for scenario j and lq is the cumulative loss threshold. 

The indicator function I(LQ lq) is set equal to 1 if the argument LQRE ≥ lq is true and RE ≥ 

0 otherwise. 

Figure 1-9. Conceptual illustration of recovery modelling framework. 
(Burton, Deierlein, Lallemant, & Lin, 2015). 
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APPENDIX 2 – Integrated Risk Modelling Toolkit (IRMT) 

In the following steps, a brief description of the basic workflow to develop building and 
community level recovery curves is presented, where the main features and capabilities of 
the tool are highlighted. For the sake of demonstration, the recovery of a random sample 
of the residential buildings of the city of Napa, California is utilized as a case study. 

STEP 1: Preparation of the input files to launch an OpenQuake-engine analysis 

In order to run the Reconstruction Recovery Model users are required to provide a CSV file 
containing the probability of exceedance of each limit state for each individual building in 
the exposure model. The latter can be computed by running a Scenario Damage 
Assessment, which is a type of analysis supported by the risk component of the 
OpenQuake-engine. The input files necessary for running a scenario damage calculation 
and the resulting output files are depicted in Figure 2-1. For technical details, definitions 
and examples of each component, readers are referred to Silva, Crowley, Pagani, Monelli, & 
Pinho (2014). 

Figure 2-1. Scenario Damage Calculator input/output structure. 

The window that requests users to upload the input files and run the scenario damage 
calculation is shown in Figure 2-2. 
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Figure 2-2. Pop-up window to run the OpenQuake-engine server. 

It should be noted that to use the OpenQuake-engine from QGIS, the user needs to set up 
the connection with a working OpenQuake-engine server using the “IRMT settings” dialog 
(Figure 2-3); the server can be installed in the same machine where the plugin is used 
(Figure 2-3, Host). Alternatively, it is possible to use a remote server or cluster. 

Figure 2-3. Pop-up window to set up the connection with a working OpenQuake-engine server. 

67 



 
 

    

  
   

    
    

   
          

    
   

     
     

         
      
          

  
     

     

  
      

        
   

 

   

  

 

 

 

                                                   
           

 
         

    
  

STEP 2: Setting up the configuration variables to run the Reconstruction Recovery Model 

The configuration variables necessary to perform the recovery modelling analysis are 
listed in Table 2-1. They should be adjusted to the available data and needs of the user. 

Table 2-1. Required configuration variables in order to run the Reconstruction Recovery Model. 
Input Variables Short Explanation 

Damage by asset 
File that contains the mean probabilities of exceedance of each limit 
state for each individual building; output of the OpenQuake-engine10 

Inspection Time Time to complete inspections 
Assessment Time Time to conduct engineering assessments 
Mobilization Time Time to mobilize for construction 
Lead Time Dispersion Level of uncertainty associated with the lead time11 

Repair Time Time to repair a building 
Repair Time Dispersion Level of uncertainty associated with the repair times 

Recovery Time 
Period between the occurrence of an earthquake and the restoration 
of full functionality of the building 
Conditional probability of being in a particular recovery-based (limit) 

Transfer Probabilities state, given the occurrence of a loss-based damage state (e.g., slight, 
moderate, extensive, complete) 

The list of the outputs from the scenario damage calculation can be visualized in Figure 2-
2. The tool offers the possibility to load the “Damage by asset” CSV file (dmg_by_asset as 
shown in Figure 2-2) as a QGIS vector layer, stored in the user’s computer as a shapefile. 
In addition, it is possible to automatically style the layer with respect to a chosen damage 
state. Alternatively, the user can upload on QGIS the “Damage by asset” CSV file, 
structured in the same format as produced by the OpenQuake-engine. If the user does not 
need to edit the layer by adding or removing fields to/from it, it is possible to perform the 
recovery modelling calculation using the CSV-based layer. Otherwise, the layer should be 
converted and saved as a shapefile. Note that shapefile limitations will reduce the field 
names to a maximum length of 10 characters each. 

At this point, the user may choose between two workflows on how to proceed to the 
generation of single buildings and/or community level recovery curves. 

10 Seismic hazard and risk calculation software, developed by the Global Earthquake Model (GEM) 
Foundation.
11 Lead time is the time required for building inspection and/or evaluation, finance planning, 
architectural/engineering consultations, a competitive bidding process, and mobilizing for construction 
(Mitrani-Reiser 2007). 
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Workflow 1 

The user can select individual buildings (or a group of buildings) and the respective 
recovery curve (single or aggregated) is automatically developed. The curve can be edited, 
digitized and exported as a CSV, as well as saved as an image. The user is required to 
select one of two available algorithmic approaches regarding the estimation of the 
recovery time (see Table 2-2) and, more importantly, to request the development of 
recovery curves by setting the Output Type tab to “Recovery Curves” (Figure 2-4b). In 
addition, the user is able to manually select the fields of the file that contain the 
probabilities of being in each damage state (Figure 2-4b:”Select fields containing damage 
state probabilities”). If the file with the damage state probabilities is in the same format 
as produced by OpenQuake, the software pre-selects the appropriate fields for the 
recovery modelling algorithm. Figure 2-4 illustrates an example of the aggregated 
recovery curve of a set of selected buildings (highlighted with yellow). 

Table 2-2. Aggregated and disaggregated approaches for the estimation of the recovery time. 
Approach for estimation of recovery time Short Explanation 
Aggregated approach Building-level recovery model as a single 

process. 
Building-level recovery modelled using four 

Disaggregated approach processes: inspection, assessment, mobilization 
and repair. 
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a) b) 
Figure 2-4. Aggregated recovery curve of a set of selected buildings in the city of Napa. 

It should be emphasized that the integration of the recovery modelling algorithm in the 
QGIS software enables the users to adapt the workflow to their needs, leveraging all the 
features provided by the QGIS framework. The QGIS Processing Toolbox gives access to a 
wide variety of geoalgorithms, seamlessly integrating several different open-source 
resources, such as R, SAGA or GDAL. For instance, a SAGA algorithm, the “Add Polygon 
Attributes to Points”, can be used to aggregate by zone a set of selected assets, resulting 
in relating each asset to the identifier of the geographical area (zone) where it belongs. 
Following, the selection of the set of assets to be considered in the analysis can be 
performed in several different ways. The user can directly select points by clicking them 
on the map, or select points by using a formula. If points have been labeled with the 
identifier of the zone, the selection can be done with respect to the zone identification (or 
ID). 
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Workflow 2 

Initially, the user must select the layer containing the information regarding the damage 
state probabilities per asset (see STEP 1), after which the specific fields that contain these 
probabilities shall be chosen (Figure 2-5). Next, the user must select a specific recovery 
time approach (Aggregate/Disaggregate) and set the number of the simulations per 
building12 (Figure 2-5). Here, it is possible to upload the layer of the study area with zonal 
geometries and generate aggregated recovery curves by zones. To exemplify, the block 
groups (zones) of the city of Napa and the aggregated recovery curve for the block group 
with the ID of 8032 are depicted in Figure 2-6. 

Figure 2-5. Pop-up window to run the Reconstruction Recovery Model. 

12 Number of damage realizations used in Monte Carlo Simulation. 
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Figure 2-6. Community level recovery curve for the zone (block group) with an ID of 8032, of the city of Napa. 

By unchecking the “Aggregate assets by zone” box (Figure 2-5) the algorithm generates a 
single community recovery curve by aggregating the recovery curves of all the buildings 
within the region. The graphs, like the one shown in Figure 2-6, are saved in the output 
directory designated by the user. In addition, building-by-building recovery curves are 
digitized and can be saved as text files (.txt) in the same output directory. The user can 
decide whether or not to generate the building-by-building recovery curves by 
(un)checking the “Save individual building curves” box. The data can be further used (e.g., 
with Microsoft Excel) to generate and visualize individual building recovery curves that 
may be of interest to the user. 
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APPENDIX 3 – Recovery from the Southern California ShakeOut 
Scenario 

A case study was conducted to model the recovery of the residential building stock from 
the 2008 Southern California ShakeOut Scenario. The ShakeOut is an exercise based on a 
potential magnitude 7.8 earthquake on the southern San Andreas Fault with the goal to 
identify the physical, social and economic consequences of a major earthquake in 
southern California and to enable the users of its results to identify what they can change 
now to avoid catastrophic impact after the inevitable earthquake occurs (Jones, et al., 
2008). It involves eight counties, including: Riverside, Orange, Kern, San Diego, San 
Bernardino, Ventura, Los Angeles and Imperial. 

The Integrated Risk Modelling Toolkit (IRMT) was used to develop an aggregated recovery 
curve for each of the above counties. Initially, the ShakeOut Earthquake was simulated 
and damage distribution statistics were computed for all the residential buildings across 
the eight counties, by running a Scenario Damage Assessment. The latter is a type of 
analysis supported by the risk component of the OpenQuake-engine (Silva et al., 2014). 
The building exposure data that were used in the Scenario Damage Assessment were 
obtained from the “Beyond button Pushing – Seismic Risk Assessment for California” 
project of GEM supported by the California Seismic Safety Commission. 

The recovery curves for each county are depicted in Figure 3-1.	 The highlighted blue 
dashed line indicates the estimated number of days needed for 95% of the housing 
capacity of each county to be restored. 
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         	Figure 3-1. Recovery curves for the counties of the Southern California ShakeOut Scenario. 
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To exemplify, the County of Riverside (in red square in Figure 3-1), will need approximately 
760 days to restore 95% of its housing capacity, with a drop to almost 40% following the 
event. Almost 74% of the total residential buildings of this county consists of wood, light 
frame with moderate code13, 11% of wood, light frame with high code14 and nearly 9% of 
mobile homes with moderate code (“Beyond button Pushing – Seismic Risk Assessment 
for California”). As calculated by the OpenQuake-engine, nearly 45% of the buildings that 
will sustain complete damage consist of wood, light frame buildings constructed according 
to moderate seismic level of design and nearly 40% of mobile homes. Mobile homes, which 
represent only 9% from the total residential buildings in the county, constitute the second 
more impacted building typology. 

These kinds of estimates could provide vital information to emergency managers and 
recovery planners, such as defining the temporary shelter needs and/or prioritizing the 
allocation of available financial resources and funds, making sure that they reach the 
areas in higher need. 

13 Buildings of older construction are best represented as Moderate-Code, if built after about 1940 (FEMA,
2016).
14 Classification system according to the level of seismic design. For example, buildings of newer 
construction (e.g., post-1973) are best represented as High-Code (FEMA, 2016). 
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APPENDIX 4 – Socio-Economic Recovery Model 

Table 4-1. Variables that were used to represent the socio-economic conditions in the city of Napa. 

Variables 

Social Sector of the Community 

Percentage of households where they speak English 
Percentage of housing units with no persons with a disability 

Percentage of civilian non-institutionalized population with any type of health insurance 

Percentage of occupied housing units with telephone service 

Percentage of occupied housing units with vehicle available 

Percentage of population 25 years and over that have at least a regular high school diploma 

Percentage of total population that is male 

Percentage of total population that is above 5 and below 60 years 

Percentage of total population that is not a minority (White alone, not Hispanic or Latino) 

Number of child care services 

Percentage of total households with less than 5 persons 

Percentage of single-parent households with a male householder, no wife present 

Economic Sector 

Percentage of households with earnings 
Percentage of population 16 years and over in labour force that is employed 

Percentage of population that has income at or above poverty level 

Per capita income as a fraction of the highest amongst the block groups 

Percentage of the renter-occupied housing units with gross rent less than $150015) (+) 

Percentage of civilian employed population 16 years and over that are not employed in food 
services, accommodation and retail trade16) 

Percentage of females 20 to 64 years in households that are in labour force 

Percentage of occupied housing units that are owner occupied 

Percentage of civilian employed population 16 years and over that are employed in 
healthcare practitioners and technical occupations 

Percentage of households with no supplemental security income 

15) In the U.S., it is commonly accepted that families who pay more than 30% of their income for housing are 
considered cost burdened. The value of $1500 as a limit of affordability was set according to this rule.
16) This variable is used as a proxy for single sector employment dependence. 
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Variables 
Percentage of households with no public assistance income 

Infrastructure Sector 

Housing density 
Percentage of housing units that are built after 1950 

Percentage of housing units that are not mobile homes 

Number of internet, television, radio and telecommunications broadcasters 

Number of schools (primary and secondary) 

Number of hotels & motels 

Number of banks 

Percentage of housing units that are vacant 

Number of police, fire, emergency relief services and temporary shelters 

Percentage of housing units that are single-family detached homes 

Community Capital 

Number of civic and social advocacy organizations 
Number of churches and religious organizations 

Number of arts, entertainment and recreation centres, libraries, museums, parks and historic 

Percentage of population that lived in the same Metropolitan Statistical Area 1 year ago 

Institutional Sector 

Percentage of civilian employed population 16 years and over employed in emergency 
services (firefighting, law enforcement, protection) 

4.1. Community Recovery Predictions over time 

In this section, the development of the Socio-Economic Recovery Model is described in 
more detail, providing information on the statistical model that was used and the 
methods to validate the accuracy of the results. The overall approach is based on 
(Despotaki, Sousa, & Burton, 2017), which is a scientific paper currently under review in the 
Earthquake Spectra Journal, resulted from the work conducted within this project. 

As mentioned in Section 3.3.1 in the main text, the recovery progress of only a sample of 
356 damaged buildings was monitored over a period of 18 months following the 2014 M6 
South Napa Earthquake (out of a total of 1462 observed by the city officials damaged 
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structures at the moment of this study). The spatial distribution of the surveyed buildings 
is presented in Figure 4-1. 

Figure 4-1. The 356 evaluated red and yellow-tagged (ATC, 2005) buildings in the city of Napa. 

Thus, the number of assessed structures in several block groups (subdivisions, which can 
be seen in Figure 4-1) was not considered sufficient to ensure a meaningful prediction of 
the fraction of recovered buildings inside such block groups. More specifically, because 
damage data was collected for a limited number of buildings, we were interested in 
determining the probability of a given structure being in recovery state 1 (and conversely 
in recovery state 0) as a function of a set of socio-economic indicators. Various methods 
are commonly used to describe the relationship between outcome parameters and a set 
of independent17 parameters. In multivariate linear regression analysis, it is possible to 
test whether predicted and independent variables are linearly related as established by an 

equation of the form � = � + �� (Hosmer & Lemeshow, 2000). In this relationship, � is 

the variable being predicted; � is a vector of independent variables; � represents the value 

of � when � = 0 (i.e. the so-called intercept); and � is a vector of estimated regression 

parameters with length equal to the length of �. Estimates of the intercept � and the 

regression coefficients � are used in the form of the above regression equation, resulting 

in a set of predictions - �. 

17 The independent parameters represent inputs or causes for variation. 
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The multivariate linear regression model can easily be extended to accommodate 
dichotomous independent variables (Fox, 2000); i.e. variables that occur in one of two 
possible states. However, when the dichotomous variable is the dependent18 one (such as 
the present case - No Recovery:0, Full Recovery:1), the interpretation of the regression 

equation is not as straightforward. In this situation, the predicted � value corresponds to 
the probability of the outcome falling into one of the two possible categories; that is: 

� � = 1 = 1− �(� = 0). However, probabilities of � being equal to 1 predicted by a 
linear regression model can, in theory, be infinitely large (therefore>1) or small (thus, <0); 
which is not in accordance with reality. 

A more realistic approach would be that according to which the probability of � = 1 tends 

to a value of one when � approaches very high values, and to zero for very low values of �, 
but never exceeds one or is lower than zero. In this case, it is possible to transform the 
independent variable so that the substantive relationship is nonlinear, but its form 
remains linear. A particularly relevant example of such transformation is the multivariate 
logistic model, which resorts to the logit correction (Fox, 2000) to produce independent 
variables that, varying between negative and positive infinity, ensure that the predicted 

values of �(� = 1) lie in the interval [0, 1]. If �!, �!, … , �! are the independent variables 

and � is the dependent one, the logit is the natural logarithm (��) of the odds of �, and the 

odds are defined as the probability (�) of � occurring, divided by the probability of � not 
occurring: 

� 
����� � = �� 1 − � 

= � + �!�! + �!�! + ⋯ + �!�! 4-1 

where �! to �! are the regression coefficients correspoing to each of the �! to �! 

independent variables. After exponentiating both sides, the probability of occurrence of 
the outcome of interest is derived as follows: 

�(!!!!!!!!!!!!⋯!!!!!) 
4-2 �(� = 1) = 

1 + �(!!!!!!!!!!!!⋯!!!!!) 

where � is the intercept of the regression. 
For the regression to be possible, each block group was assigned a recovery stage (0 or 1), 
to make the data analogous to the socio-economic variables that were collected at the 

18 The dependent parameters represent the output or outcome whose variation is being studied. 
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block group level of geography. To accomplish this, a simulation procedure was devised 
and for each of a total of 1000 simulations a single building was selected at random from 
the structures assessed in each block group. Next the selected building’s recovery stage 
was attributed to the respective block group. Accordingly, for each simulation (S), the 

corresponding � � = 1 � was determined through Equation 4-2, based on the maximum-
likelihood estimation (Hosmer & Lemeshow, 2000) of the corresponding logistic regression 

parameters �! and �!. Thus, both the mean predicted values of P(Y=1) and associated 
uncertainty could be calculated for each block group. An example of these results is 
presented in Figure 4-2, where the mean, as well as the lower (16% percentile) and upper 
(84% percentile) bound predicted recovery probabilities were mapped for each block group, 
6 months after the earthquake (similar graphs can be produced at any time after the 
event, even after the time of the last field survey, 18 months after the earthquake). Figure 
4-2 highlights the fact that it is possible to communicate the uncertain nature of the 
recovery process in a simple yet meaningful way, allowing decision and policy-makers to 
plan for various scenarios. 

Figure 4-2. Mean, 16% and 84% percentile recovery probabilities in the assessed area, 6 months 
following the event, as determined by the Socio-Economic Recovery Model (Despotaki, Sousa, & Burton, 
2017). 

4.2. Goodness-of-Fit and Accuracy of the Model 

The methods used to assess the goodness-of-fit of a logistic regression model follow 
similar principles as those applicable in the evaluation of a linear model. Therefore, to 
better understand the methodology subsequently described, each step is presented in the 
context of its equivalent in a general linear regression. In linear regression analysis, the 
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evaluation of the overall model is based on three sums of squares: a) the total sum of 

squares (SST), which is the sum of squared deviations of all the observed �! with respect to 

the mean predictions (�) (i.e. (�! − �)!); (�! − �)!; b) the error sum of squares (SSE); and 
c) the regression sum of squares (SSR) is simply SSR=SST-SSE (Hosmer & Lemeshow, 
2000). 

Just as the sum of squared errors (SSE) is the quantity used to assess the quality of a 
linear regression, the log likelihood is the criterion in the case of the logistic model. For 
convenience, the log likelihood (LL) is usually multiplied by -2 (-2LL), resulting in a value 

that, for the intercept only model (designated �!), is equivalent to the total sum of squares 
in linear regression (SST). Similarly, the value of -2LL for the logistic regression model that 
includes the independent variables as well as the intercept (full model) that is designated 
�! is analogous to the error sum of squares (SSE). In logistic regression, the most direct 
comparable parameter to the regression sum of squares (SSR) is the difference between 

�! and �! , which is interpreted as the model chi-square (�!) statistic (Hosmer & 
Lemeshow, 2000). 

All the log likelihood terms presented above can be used in the evaluation of different 

statistical hypotheses in the context of logistic regression. However, �! is of particular 
relevance here, as it has been historically used as a measure of the model “goodness of 

fit”. While (�! - �!) can be used to determine whether a full model provides better 

predictions than an intercept-only model, �! compares the full model with a saturated 

one. The further assumption that �! follows a �! distribution allows the computation of 

its statistical significance (or p-value), as � = 1− �!!"#(�! ,��). In the latter, �� is the 

number of degrees of freedom of the �! distribution, and CDF stands for its cumulative 
distribution function. For further details, readers are referred to Hosmer & Lemeshow 
(2000) regarding matters concerning the definition of a saturated model, the number of 

degrees of freedom of �!, and the limitations inherent to the assumption of �! following 

a �! distribution. 

In the present case, a significance level (alpha) of 0.05 was assumed, proving the limit for 
the p-value below which we reject the null hypothesis that the full model allows us to 
make predictions with similar quality as the saturated model. It was found that from each 

of the 1000 regressions the predicted probabilistic distributions of �(� = 1) were 
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statistically significant for virtually all (95%) simulations, based on the considered alpha 
threshold. 

In addition, as a measure of the quality of the results, the mean predicted values of 
recovery were plotted as a function of the “surveyed” probabilities in each block group for 
each of the field surveys. In this context, “surveyed” probabilities are determined as the 
fraction of assessed buildings that are fully recovered at the time of interest, in each block 
group. As illustrated in Figure 4-3, the relationship between mean predicted and surveyed 
values approaches an almost perfect linear trend for the three survey instances. 

Figure 4-3. Predicted versus “surveyed” probabilities in each block group (Despotaki, Sousa, & Burton, 2017). 

On the other hand, when surveyed probabilities are either zero or one (mainly in block 
groups where very few buildings were surveyed), the model probabilities differed 
significantly from the observed ones. This is considered to be a strength of the Socio-
Economic Recovery Model, because the observed probabilities in these cases (zero or one) 
are not an accurate representation of reality, but rather a consequence of the limited 
number of buildings assessed in these particular block groups. As a result, the correction 
provided by the model for these probabilities reflects the spatial trend of recovery in the 
block groups with higher (and more significant) number of assessed structures. 

4.3. Contribution of the predictors in the regression analysis 

Wald statistics were used to compute the significance (p-value) of the regression 
coefficients obtained for each independent socio-economic variable. The Wald statistic 
can be calculated as the ratio between the coefficient of a given independent variable and 
its standard error, in which case it follows a standard normal distribution and its formula 

parallels the formula for the � ratio for coefficients in linear regression (Hosmer & 
Lemeshow, 2000). P-values lower than 0.10, as suggested by Hosmer and Lemeshow 
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(2000), are assumed to correspond to the variables that most significantly affect the 
recovery results. Herein, seven of the 38 (Table 4-1) socio-economic parameters, the 
variable representing the time, T, and the damage indicator (MMI) significantly contribute 
to the prediction of recovery trajectory, as presented in Section 3.3 in the main text. 
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